\(P=3-3x-x^2\)

Admin giúp em nha

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

P= -(x2 + 2.3x/2 + 9/4) +3 +9/4

GTLN: P = 21/4

26 tháng 7 2016

\(P=-\left(x^2+3x-3\right)=-\left(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{21}{4}\right)=-\left[\left(x+\frac{3}{2}\right)^2-\frac{21}{4}\right]=-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\)

Do \(\left(x+\frac{3}{2}\right)^2\ge0,x\in R\)

nên \(-\left(x+\frac{3}{2}\right)^2\le0,x\in R\) 

mà \(-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\le\frac{21}{4},x\in R\)

VẬy \(Max_P=\frac{21}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3  

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

20 tháng 9 2016

a) \(A=\left(x^2-10x+25\right)\)\(-28\)

   \(A=\left(x-5\right)^2-28\)\(>=\)-28

MinA = -28 <=> x-5=0 <=> x=5

b)\(B=-\left(x^2+2x+1\right)+6\)

   \(B=-\left(x+1\right)^2+6\)\(< =\)6

MaxB = 6 <=> x+1=0 <=> x=-1

c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)

   \(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)

MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)

d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)

\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)

MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)

Đúng thì nhớ tích cho minh nha

17 tháng 9 2019

ghi đề hẳn hoi coi

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

11 tháng 10 2020

\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)

\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)

\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)

Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)

=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)

\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)

\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3

11 tháng 10 2020

1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)

Vậy Min(H) = 31/8 khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)

Vậy Min(I) = -9/2 khi x = -3

10 tháng 5 2018

         \(A=\frac{x^2}{x^4+x^2+1}\)

\(\Rightarrow\)\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}\)

                 \(=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\) 

\(\Rightarrow\)\(A\le\frac{1}{3}\)

Dấu  "=" xảy ra  \(\Leftrightarrow\)\(x=\pm1\)

Vậy  Max A = 1/3  <=>  \(x=\pm1\)