Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với mọi giá trị của x;y ta có:
\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Hay \(C\ge-10\)với mọi giá trị của x;y
Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy................
b, Với mọi giá trị của x ta có:
\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)
Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.
Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)
\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Vậy..................
Chúc bạn học tốt!!!
\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)
\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)
\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)
\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)
\(\Rightarrow C_{MIN}=0+0-10=-10\)
\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)
\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)
\(\left(2x-1\right)^2\ge0\)
\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)
\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)
\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
a: \(=-\dfrac{1}{15}x^6y\)
b: \(=\dfrac{4}{5}ab^5\cdot2x^3y\cdot\left(-y\right)=-\dfrac{8}{5}ab^5\cdot x^3y^2\)
c: \(=-16\cdot\dfrac{3}{4}v^3\cdot\dfrac{-2}{5}uv=\dfrac{24}{5}v^4u\)
d: \(=8\cdot\left(-64\right)\cdot5\cdot u^2v^2\cdot\left(-27\right)v^3=69120u^2v^5\)
e: \(=-10y\cdot8y^3z^3\cdot25z^2=-2000y^4z^5\)
a, Vì \(\left|\frac{2}{5}-x\right|\ge0\Rightarrow\frac{5}{2}\left|\frac{2}{5}-x\right|\ge0\Rightarrow-\frac{5}{2}\left|\frac{2}{5}-x\right|\Rightarrow D=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\le3\)
Dấu "=" xảy ra khi \(\frac{5}{2}\left|\frac{2}{5}-x\right|=0\Rightarrow x=\frac{2}{5}\)
Vậy GTLN của D = 3 khi x = 2/5
b, Vì \(\left|\frac{5}{3}-x\right|\ge0\Rightarrow P=-\left|\frac{5}{3}-x\right|\le0\)
Dấu "=' xảy ra khi x = 5/3
VẬy GTLN của P = 0 khi x = 5/3
Giải:
Vì \(\left(2x-3\right)^2+5\ge0\) nên để D lớn nhất thì \(\left(2x-3\right)^2+5\) nhỏ nhất
Ta có: \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\)
\(\Rightarrow D=\dfrac{4}{\left(2x-3\right)^2+5}\le\dfrac{4}{5}\)
Dấu " = " khi \(2x-3=0\Rightarrow x=\dfrac{3}{2}\)
Vậy \(MAX_D=\dfrac{4}{5}\) khi \(x=\dfrac{3}{2}\)
\(R\left(x\right)=-x^2+\dfrac{2}{3}x+\dfrac{1}{5}\)
\(R\left(x\right)=-1\left(x^2-\dfrac{2}{3}x-\dfrac{1}{5}\right)\)
\(R\left(x\right)=-1\left(x^2-2.x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^2-\dfrac{1}{5}\right)\)
\(R\left(x\right)=-1\left[\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{45}\right]\)
\(R\left(x\right)=-1\left(x-\dfrac{1}{3}\right)^2+\dfrac{14}{45}\)
\(R\left(x\right)=\dfrac{14}{45}-\left(x-\dfrac{1}{3}\right)^2\le\dfrac{14}{45}\)
Vậy R(x) max = 14/45 tại x = 1/3
\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)
\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)
\(\Leftrightarrow\dfrac{1}{3}x+4=0\)
\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)
\(\Leftrightarrow x=-4:\dfrac{1}{3}\)
\(\Leftrightarrow x=-12\)
Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)
\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)
Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)
Ta có:
\(D=3-\dfrac{5}{2}\left|\dfrac{2}{5}-x\right|\)
mà \(\left|\dfrac{2}{5}-x\right|\ge0\)
\(\Leftrightarrow\dfrac{5}{2}\left|\dfrac{2}{5}-x\right|\ge0\)
\(\Leftrightarrow D\le3\)
Để D đạt GTLN thì \(\left|\dfrac{2}{5}-x\right|\) phải đạt GTNN
Dấu '' = '' xảy ra khi:
\(\left|\dfrac{2}{5}-x\right|=0\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy ......
Chúc bạn học tốt!
Phạm Hoàng GiangNguyễn Thanh HằngLinh NguyễnNguyễn Huy Tú
và các bạn nữa!