Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
`M=-9x^2+6x-3`
`M=-(9x^2-6x+3)`
`M=-(9x^2-6x+1+2)`
`M=-(3x-1)^2-2`
Vì `-(3x-1)^2 <= 0 AA x`
`<=>-(3x-1)^2-2 <= -2 AA x`
Hay `M <= -2 AA x`
Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`
Vậy `GTLN` của `M` là `-2` khi `x=1/3`
\(M=-9x^2+6x-3\)
\(M=-\left(9x^2-6x+3\right)\)
\(M=-\left[\left(3x-1\right)^2+2\right]\)
\(M=-\left(3x-1\right)^2-2\)
\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).
a.
\(A=6\left(x^3+2^3\right)-6x^3-2\\ =6x^3+48-6x^3-2\\ =46\)
Vậy biểu thức trên không phụ thuộc vào giá trị x.
b.
\(B=2\left(\left(3x\right)^3+1\right)-54x^3\\ =2\left(27x^3+1\right)-54x^3\\ =54x^3+2-54x^3\\ =2\)
Vậy biểu thức trên không phụ thuộc vào giá trị x.
a) \(A=6\left(x+2\right)\left(x^2-2x+4\right)-6x^3-2\)
\(A=6\left(x^3+8\right)-6x^3-2\)
\(A=6x^3+48-6x^3-2\)
\(A=46\)
Vậy: ....
b) \(B=2\left(3x+1\right)\left(9x^2-3x+1\right)-54x^3\)
\(B=2\left(27x^3+1\right)-54x^3\)
\(B=54x^3+2-54x^3\)
\(B=2\)
Vậy: ...
Hàm không có giá trị lớn nhất