Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với mọi giá trị của x thì /x+2/ >=0 (>= là lớn hơn hoặc bằng)
=>-/x+2/=<0
khi đó A=<0 => A đạt GTLN khi /x+2/=0 =>x=-2
\(A=\left|x\right|-\left|x-2\right|\le\left|x-\left(x-2\right)\right|=\left|2\right|=2\)
Vậy GTNN củ A = 2 khi \(0\le x\le2\)
Ta có :
Vì lx-2l >= 0 nên -5lx-2l=<0(vì nhân cả hai vế với snâ nên dấu b.đẳng thức sẽ thay đổi)
Cộng 10 vào hai vế ,ta có :
10-5lx-2l=<10-0 <=> 10-5lx-2l =<10
hay A=<10
Dấu = xảy ra <=> x-2=0
<=>x=0+2=2
Vậy GTLN của A là 10 tại x=2
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
Để X^2+15/ X^2 + 3 đạt GTLN
Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất
x^2≥0⇔x^2+3≥0+3=3
=>GTNN của mẫu là 3 khi đó x^2=0 <=>x=0
=>Giá trị của tử khi x=0 là 0^2+15=15
=>GTLN của biểu thức là:15/3=5⇔x=0
Giúp mình với