Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
a) A = 5 - | 2x - 1|
để A lớn nhất thì 5- | 2x- 1| phải lớn nhất => | 2x - 1| phải nhỏ nhất
vì GTNN của | 2x - 1| = 0 =>max A = 5 - |2x - 1| = 5 - 0 = 5
b) \(B=\frac{1}{\left(x-2\right)+3}\) để B lớn nhất thì \(\frac{1}{\left(x-2\right)+3}\) phải lớn nhất
=> ( x - 2 ) + 3 phải nhỏ nhất => ( x - 2)+ 3 = 1 ( vì mẫu ko thể bằng 0)
=> \(max\) \(B=1\)
c) \(c=\frac{x+2}{\left(-x\right)}\) để C lớn nhất thì \(\frac{x+2}{-x}\)phải lớn nhất
=> -x phải là số nguyên dương nhỏ nhất, => -x = 1 ; x = -1
=> \(max\) \(C=\frac{x+2}{-x}=\frac{-1+2}{1}=1\)
nhớ k nha!