Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
a) \(A=4x^2-4x-1\)
\(=\left(2x\right)^2-2.\left(2x\right).1+1-1-1\)
\(=\left(2x-1\right)^2-2\)
\(\Rightarrow Min_A=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy ...
b) \(B=\frac{1}{4}x^2+x-1\)
\(=\left(\frac{1}{2}x\right)^2+2.\left(\frac{1}{2}x\right)+1-1-1\)
\(=\left(\frac{1}{2}x+1\right)^2-2\)
\(\Rightarrow Min_B=-2\)
\(\Leftrightarrow x=-2\)
Vậy ...
a) \(A=4x^2-4x-1\)
\(A=4x^2-4x+1-2\)
\(A=\left(2x-1\right)^2-2\)
Có: \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2-2\ge-2\)
Dấu '=' xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy: \(Min_A=-2\) tại \(x=\frac{1}{2}\)
b) \(B=\frac{1}{4}x^2+x-1\)
\(B=\frac{1}{4}x^2+x+1-2\)
\(B=\left(\frac{1}{2}x+1\right)^2-2\)
Có: \(\left(\frac{1}{2}x+1\right)^2\ge0\Rightarrow\left(\frac{1}{2}x+1\right)^2-2\ge-2\)
Dấu = xảy ra khi: \(\left(\frac{1}{2}x+1\right)^2=0\Rightarrow\frac{1}{2}x+1=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_B=-2\) tại \(x=-\frac{1}{2}\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Ta có:
\(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)
\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)
=> max A = 1 tại x = 1
\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)
\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)
=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2
Vậy...
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4