Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|3,7-x\right|+2,5\)
\(\Rightarrow GTLN\)là 2,5
Khi 3,7 - x = 0
x = -3,7
a) Ta có :
\(\left|3,7-x\right|\ge0\)
\(\Rightarrow\left|3,7-x\right|+2,5\ge2,5\)
Dấu " = " xảy ra khi x = -3 , 7
Vậy MINA= 2 , 5 khi x = -3 , 7
b) Ta có :
\(\left|x+1,5\right|\ge0\)
\(\Rightarrow\left|x+1,5\right|-4,5\ge-4,5\)
Dấu " = " xảy ra khi x = - 1.5
Vậy MINB= - 4 , 5 khi x = - 1 , 5
c)
Ta có
\(\left|x+1,1\right|\ge0\)
\(\Rightarrow-\left|x+1,1\right|\le0\)
\(\Rightarrow1,5-\left|x+1,1\right|\le1,5\)
Dấu " = " xảy ra khi x = - 1 , 1
Vậy MAXC= 1,5 khi x = - 1 , 1
d)
Ta có :
\(\left|1,7-x\right|\ge0\)
\(\Rightarrow-\left|1,7-x\right|\le0\)
\(\Rightarrow-3,7-\left|1,7-x\right|\le-3,7\)
Dấu " = " xảy ra khi x = 1,7
Vậy MAXD= - 3 , 7 khi x = 1,7
a) Vì \(\left|4,3-x\right|\ge0\Rightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu "=" xảy ra <=> \(\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
Vậy Amin = 3,7 khi và chỉ khi x = 4,3
b) Vì \(\left|3x+8,4\right|\ge0\Rightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)
Vậy BMin = -14 khi và chỉ khi x = -2,8
c) Vì \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu bằng xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)
Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -1,5
d) D = |x-2018| + |x-2017| = |x-2018| + |2017-x| lớn hơn hoặc bằng |x-2018+2017-x| = |-1|=1
Dấu "=" xảy ra khi và chỉ khi (x-2018).(2017-x) lớn hơn hoặc bằng 0
(Tự giải ra)
Vậy DMin = 1 khi và chỉ khi ...
a, Ta có
\(\left|x-1,7\right|=2,3\\ \Rightarrow\left[{}\begin{matrix}x-1,7=2.3\\x-1.7=-2,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy....
b, Ta có :
\(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy...
|1,5-x|+|2,5-x|=0
=> |1,5-x| = 0 và |2,5-x| = 0
=> x = 1,5 và x = 2,5
Không thể tồn tại 2 giá x cung một lúc.
Vậy không tồn tại x.