Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x< 0\Rightarrow A< 0\) (1)
Với \(x=0\Rightarrow A=0\) (2)
Với \(x>0\Rightarrow A>0\) (3)
Từ (1), (2), (3) ta thấy GTLN của A nếu có sẽ xảy ra tại các giá trị x dương
Xét \(x>0\) chia cả tử và mẫu của A cho x:
\(A=\frac{x}{x^2+2.2018x+2018^2}=\frac{1}{x+\frac{2018^2}{x}+2.2018}\)
\(\Rightarrow A\le\frac{1}{2\sqrt{x.\frac{2018^2}{x}}+2.2018}=\frac{1}{2.2018+2.1028}=\frac{1}{4.2018}=\frac{1}{8072}\)
\(\Rightarrow A_{max}=\frac{1}{8072}\) khi x=2018
Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc . Phần dưới vẫn như vậy.
Ta có thể viết:
\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)
\(\Rightarrow a=b=c\)
\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)
Do đó:
\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc
Vậy GTNN của Q là: 6000 : 9 = 666,6
Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\)
\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6
Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
Mk nghĩ điều kiện x>0
\(M=\frac{x}{\left(x+2018\right)^2}\Rightarrow\frac{1}{M}=\frac{\left(x+2018\right)^2}{x}=\frac{x^2+4036x+2018^2}{x}=x+\frac{2018^2}{x}+4036\)
Áp dụng BĐt cô-si cho hai số dương \(\frac{1}{M}\ge2\sqrt{x\cdot\frac{2018^2}{x}}+4036=4036+4036=8072\)
Nên \(M\le\frac{1}{8072}\Leftrightarrow x=\frac{2018^2}{x}\Leftrightarrow x^2=2018^2\Leftrightarrow x=2018\left(x>0\right)\)
C2 \(M=\frac{x}{\left(x+2018\right)^2}=\frac{x}{x^2+2018^2+4036x}\le\frac{1}{4}\left(\frac{x}{x^2+2018^2}+\frac{1}{4036}\right)\le\frac{1}{4}\left(\frac{x}{2\cdot2018x}+\frac{1}{4036}\right)\)
\(=\frac{1}{4}\cdot\frac{2}{4036}=\frac{1}{8072}\)
C3 \(M=\frac{x}{\left(x+2018\right)^2}=\frac{x}{x^2+4036x+2018^2}\le\frac{x}{2\cdot2018x+4036x}=\frac{x}{x\left(8072\right)}=\frac{1}{8072}\)
Vậy Max M =\(\frac{1}{8072}\Leftrightarrow x=2018\)
Mk nghĩ bạn nên chọn cách 3 là cách đơn giản nhất nhé. Với cả nó cũng không ràng buộc số dương hay âm còn 2 cách còn lại bắt buộc phải là số dương
\(T=\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Để T lớn nhất thì \(2020+\left|x-2018\right|\) nhỏ nhất
Mà \(2020+\left|x-2018\right|\ge2020;\forall x\)
--> \(Min=2020\) khi \(x=2018\)
Khi đó \(T=\dfrac{-2\left|2018-2018\right|-2021}{2020+\left|0\right|}=\dfrac{-2.0-2021}{2020}=-\dfrac{2021}{2020}\)
--> \(Max_T=-\dfrac{2021}{2020}\) khi \(x=2018\)
P/s: hongg bt đúng hem nha:v
$T=\frac{-2|x-2018|-2021}{2020+|x-2018|}=\frac{-2(|x-2018|+2020)+2019}{2020+|x-2018|}=-2+\frac{2019}{2020+|x-2018|}$
Lại có $|x-2018| \ge 0$ nên
$T=-2+\frac{2019}{2020+|x-2018|} \le -2+\frac{2019}{2020}=-\frac{2021}{2020}$
Vậy $GTLN=-\frac{2021}{2020}$
Dấu $"="$ xảy ra khi và chỉ khi: $|x-2018|=0\Leftrightarrow x=2018$
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
\(A=\frac{x}{\left(x+2018\right)^2}\Leftrightarrow\frac{1}{A}=\frac{\left(x+2018\right)^2}{x}\)\(=\frac{x^2+2.2018x+2018^2}{x}\)
\(=x+4036+\frac{2018^2}{x}\)
Vì \(x+\frac{2018^2}{x}\ge2\sqrt{x.\frac{2018^2}{x}=4036}\)
Vậy GTNN của \(\frac{1}{A}\)=4036+4036=8072
Vậy GTLN của A=\(\frac{1}{8072}\)
https://hoc24.vn/vip/thanhcuamua
có cho x>0 đâu mak cô si?