Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)
Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)
Chứng minh tương tự ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)
Cộng các vế BĐT trên ta được
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)
Do xyz=1 nên ta được
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)
Từ đó ta được
\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1
theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)
Mà\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)
Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha
Dễ chứng minh \(a^3+b^3\ge ab\left(a+b\right)\)với \(a>0,b>0\). Do đó:
\(a^3+b^3+1\ge ab\left(a+b\right)+abcab\left(a+b+c\right)\)
\(A\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)
\(max_A=1\Leftrightarrow a=b=c=1\)
P/s : Các bạn tham khảo nha
We have:
\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)
Consider:
\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)
\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)
Prove:
\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)
\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)
Consider:
\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)
\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)
Now we need to prove:
\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)
\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)
\(\Rightarrow M\le\frac{1}{2}\)
Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)
C/m: BDT: \(a^3+b^3+abc\ge ab\left(a+b+c\right)\) (1)
That vay ta co:
\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\) (luon dung)
Tuong tu ta co: \(b^3+c^3+abc\ge bc\left(a+b+c\right)\) (2)
\(c^3+a^3+abc\ge ca\left(a+b+c\right)\) (3)
Tu (1), (2), (3) suy ra:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\) (dpcm)
Ta chứng minh BĐT \(x^3+y^3\ge xy\left(x+y\right)\) với x; y dương
Thật vậy, BĐT \(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Áp dụng:
\(T=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{abc}{ab\left(a+b+c\right)}=\sum\frac{c}{a+b+c}=1\)
\(\Rightarrow T_{max}=1\) khi \(a=b=c=1\)
\(\Leftrightarrow M=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+â\right)}+\frac{ab}{c^2\left(a+b\right)}\)
áp dụng bđt cauchy ta có:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge\frac{1}{a}\);\(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\);\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)
\(\Rightarrow M\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{8abc}}=\frac{3}{2}\)
Ta có BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) với x, y > 0(dễ dàng chứng minh)
Áp dụng vào suy ra \(A\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(A\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)
\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{1}{\left(a+b+c\right)}\left(\frac{a+b+c}{abc}\right)=\frac{1}{abc}=1\) (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)
Ta có BĐT sau: x3+y3≥xy(x+y)x3+y3≥xy(x+y) với x, y > 0(dễ dàng chứng minh)
Áp dụng vào suy ra A≤1ab(a+b)+1+1bc(b+c)+1+1ca(c+a)+1A≤1ab(a+b)+1+1bc(b+c)+1+1ca(c+a)+1
A≤1ab(a+b)+abc+1bc(b+c)+abc+1ca(c+a)+abcA≤1ab(a+b)+abc+1bc(b+c)+abc+1ca(c+a)+abc
=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)
=1(a+b+c)(a+b+cabc)=1abc=1=1(a+b+c)(a+b+cabc)=1abc=1 (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)