Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét bất đẳng thức phụ: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)(*)
(*)\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\)*đúng với mọi x > 0*
Áp dụng tương tự rồi cộng vế theo vế, ta được: \(A\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)
\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)
\(\Rightarrow\sqrt{x}-1< 0\)
mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)
\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )
c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )
Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)
ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
a, Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)
\(P=\sqrt{2x}-\sqrt{2}x\)
\(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)
b, Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)
\(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)
c, Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)
\(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)
\(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)
Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{4}\)
vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)

Ta có: \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)
Đặt \(c=x+y,a=y+z,b=z+x\Rightarrow abc=8\Rightarrow a,b,c\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\)
giả \(x\le y\le z\Rightarrow c\le b\le a\).
Lại có: \(a+b+c=2\left(x+y+z\right)=6\Rightarrow a\ge2\)
- Với a=2 ta có: \(\hept{\begin{cases}b+c=4\\bc=4\end{cases}\Rightarrow b=c=2\Rightarrow x=y=z=1}\)
- Với a=4 ta có: \(\hept{\begin{cases}b+c=2\\bc=2\end{cases}}\)( ko có nghiệm nguyên)
- Với a=8 ta có: \(\hept{\begin{cases}b+c=-2\\bc=1\end{cases}\Rightarrow b=c=-1\Rightarrow x=-5,y=z=4}\)
Vậy hệ pt có 4 nghiệm: \(\left(1;1;1\right),\left(4;4;-5\right),\left(4;-5;4\right),\left(-5;4;4\right)\)
A= 2016+√(10-(x2-2x3+32))
= 2016+√(10-(x-3)2)
Để A đạt Max <=> √(10-(x-3)2) Max
Lại có B= 10-(x-3)2 \(\le\)10 . Để B =10 <=> x=3
Vậy x= 3 thì A đạt Max = 2016+√10
Trả lời:
Vậy x = 3
~ Học tốt ~