Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
\(A=\frac{1}{x^2-4x+9}=\frac{1}{x^2-4x+4+5}=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\forall x\in R\)
Vậy GTLN của A bằng 1/5 khi x = 2.
Ta có : -x2-4x+9
=-x2-4x-4+13
=-(x2+4x+4)+13
=-(x+2)2+13
=13-(x+2)2
\(\Rightarrow\)(x+2)2\(\ge\)0
Ma: 13>0 \(\Leftrightarrow\)(x+2)2\(\le\)13
Vay GTLN la 13
Dau "=" xay ra khi : x+2=0
x=-2
-x^2-4x+9=-(x^2+4x+4-13)=-(x+2)^2+13
ta co -(x+2)^2 nho hon hoac bang 0
13 lon hon 0
nen bt tren se nho hon hoac bang 13
dau = xay ra <=> x+2=0=>x=-2
vay min bt =13 tai x=-2
a) \(A=4x^2-4x-1\)
\(=\left(2x\right)^2-2.\left(2x\right).1+1-1-1\)
\(=\left(2x-1\right)^2-2\)
\(\Rightarrow Min_A=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy ...
b) \(B=\frac{1}{4}x^2+x-1\)
\(=\left(\frac{1}{2}x\right)^2+2.\left(\frac{1}{2}x\right)+1-1-1\)
\(=\left(\frac{1}{2}x+1\right)^2-2\)
\(\Rightarrow Min_B=-2\)
\(\Leftrightarrow x=-2\)
Vậy ...
a) \(A=4x^2-4x-1\)
\(A=4x^2-4x+1-2\)
\(A=\left(2x-1\right)^2-2\)
Có: \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2-2\ge-2\)
Dấu '=' xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy: \(Min_A=-2\) tại \(x=\frac{1}{2}\)
b) \(B=\frac{1}{4}x^2+x-1\)
\(B=\frac{1}{4}x^2+x+1-2\)
\(B=\left(\frac{1}{2}x+1\right)^2-2\)
Có: \(\left(\frac{1}{2}x+1\right)^2\ge0\Rightarrow\left(\frac{1}{2}x+1\right)^2-2\ge-2\)
Dấu = xảy ra khi: \(\left(\frac{1}{2}x+1\right)^2=0\Rightarrow\frac{1}{2}x+1=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_B=-2\) tại \(x=-\frac{1}{2}\)
\(A=\dfrac{1}{x^2-4x+4+5}=\dfrac{1}{\left(x-2\right)^2+5}\)
Do \(\left(x-2\right)^2\ge0\) ; \(\forall x\Rightarrow\left(x-2\right)^2+5\ge5\) ; \(\forall x\)
\(\Rightarrow A\le\dfrac{1}{5}\)
\(A_{max}=\dfrac{1}{5}\) khi \(x=2\)