Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)
\(A=13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\) với \(0...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. \(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\) \(A\le2\sqrt{5}..\)
\(A^2=\left(\sqrt{13}.\sqrt{13x^2-13x^4}+3\sqrt{3}.\sqrt{3x^2+3x^4}\right)^2\)
\(\Rightarrow A^2\le\left(13+27\right)\left(16x^2-10x^4\right)=40\left[\frac{32}{5}-10\left(x^2-\frac{4}{5}\right)^2\right]\le256\)
\(\Rightarrow A\le16\Rightarrow A_{max}=16\) khi \(x^2=\frac{4}{5}\)