Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
\(a,x^2-4x+1=0.\)
\(\text{Áp dụng biệt thức }\Delta=b^2-4ac\text{, ta có:}\)(Lớp 9 kì 2 hok)
\(\Delta=-4^2-4.1.1=16-4=12\)
\(\Rightarrow\text{pt có 2 nghiệm }\orbr{\begin{cases}x_1=\frac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x_2=\frac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{cases}}\)
b,bn xem lại đề nếu đúng nói mk 1 tiếng mk làm tiếp cho
ta gọi
ab=0,5 (a+b)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} ax+bx=67 kết quả =67\)
a) A= x^2 - 6x + 5
A=x^2-6x+9-4
A=(x-3)^2-4>hoặc= -4
Pmin =-4 <=> x-3=0 <=> x=3
P/s máy mình lag nên ko sủ dụng được cồn thức
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Xin lỗi Thắng nha mk ấn nhầm mk định cho vào câu khác cơ rất xin lỗi
1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)
Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)
=> \(x=1\) =>\(x=y\)
Mình chỉ có thể giúp bạn câu 1 thôi
Bài 2:
\(A=-x^2-4x-2=-\left(x^2+4x+4\right)+2=-\left(x+2\right)^2+2\le2\)
Vậy GTLN của A là 2 khi x = -2
\(B=-2x^2-3x+5=-2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{49}{8}=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\)
Vậy GTLN của B là \(\dfrac{49}{8}\) khi x = \(-\dfrac{3}{4}\)
1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)
\(maxP=18\Leftrightarrow x=-3\)
2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)
\(maxQ=5\Leftrightarrow x=1\)
3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)
\(maxA=6\Leftrightarrow x=2\)
4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)
\(maxB=84\Leftrightarrow x=-6\)
Bài này không có GTLN, chỉ có GTNN nha.
\(A=3x^2+y^2+4x-y=3x^2+4x+y^2-y=\frac{1}{3}\left(9x^2+12x+4\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{19}{12}\)
\(=\frac{1}{3}\left(3x+2\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge-\frac{19}{12}\)
Dấu \(=\)khi \(\hept{\begin{cases}3x+2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{2}\end{cases}}\)