Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2x\right|=3-x\)
\(\Rightarrow\orbr{\begin{cases}2x=3-x\\2x=x-3\end{cases}}\Rightarrow\orbr{\begin{cases}2x+x=3\\2x-x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=3\\x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
b) \(\left|x-1\right|=2x-1\)
\(\Rightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}}\Rightarrow\orbr{\begin{cases}x-2x=-1+1\\x+2x=1+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
lớp 6 gì kinh thế cái này lớp 8
M=a^3+b^3+ab
M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab
a+b=1=> b=1-a
M=1-2a(1-a)=1+2a^2-2a
M=2.[(a^2-a+1/2)]+1
-=2(a-1/2)^2+1/2
GTLN của M=1/2 khi a=b=1/2
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
\(giai\)
\(\text{mình chỉ giải câu a thôi mấy câu còn lại tương tự}\)
\(3x^2\ge0\forall x\)
\(\Rightarrow A=1-3x^2\le1\)
\(\Rightarrow A_{max}=1\Leftrightarrow x=0\)
\(\text{Vậy giá trị lớn nhất của A là 1 khi và chỉ khi x=0}\)
Tính A : A=[400-(-2)^2][400-(-6)^2][400-(-8)^2].....[400-(-88)^2]....[400-(-400)^2]