K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giá trị nhỏ nhất chứ hình như sai đề

6 tháng 3 2017

\(giải:\)

\(-4x^2+5x+1\)

\(=-4x^2+5x-\frac{25}{16}+\frac{41}{16}\)

\(=\left(-4x^2+5x-\frac{25}{16}\right)+\frac{41}{16}\)

\(=-\left(4x^2-5x+\frac{25}{16}\right)+\frac{41}{16}\)

\(=-\left[\left(2x\right)^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{41}{16}\)

\(=-\left(2x-\frac{5}{4}\right)^2+\frac{41}{16}\le\frac{41}{16}\)

\(GTLN\) \(của\)\(-4x^2+5x+1=\frac{41}{16}\)\(đạt\)\(khi\)\(-\left(2x-\frac{5}{4}\right)^2=0\)

                                                                                          \(\Leftrightarrow2x-\frac{5}{4}=0\)

                                                                                          \(\Leftrightarrow2x=\frac{5}{4}\Leftrightarrow x=\frac{5}{8}\)

vậy gtln của -4x^2+5x+1 bằng 41/16 tại x=5/8

28 tháng 7 2019

Ta có: A = 2x2 - 5x - 8 = 2(x2 - 5/2x + 25/16) - 89/8 = 2(x - 5/4)2 - 89/8

Ta luôn có: 2(x - 5/4)2 \(\ge\)\(\forall\)x

=> 2(x - 5/4)2 - 89/8 \(\ge\)-89/8 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

Vậy Min của A = -89/8 tại x = 5/4

Ta có: B = -x2 - 4x + 3 = -(x2 + 4x + 4) + 7 = -(x + 2)2 + 7

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 7 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của B = 7 tại x = -2

1: A=(x-1)^2>=0

Dấu = xảy ra khi x=1

5: B=-(x^2+6x+10)

=-(x^2+6x+9+1)

=-(x+3)^2-1<=-1

Dấu = xảy ra khi x=-3

2: B=x^2+4x+4-9

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

6: =-(x^2-5x-3)

=-(x^2-5x+25/4-37/4)

=-(x-5/2)^2+37/4<=37/4

Dấu = xảy ra khi x=5/2

3: =x^2+x+1/4-1/4

=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2

7: =4x^2+4x+1-2

=(2x+1)^2-2>=-2

Dấu = xảy ra khi x=-1/2

20 tháng 4 2018

a/ Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+5x\ge0\)với mọi giá trị của x

=> \(x^2+5x-17\ge0-17=-17\)với mọi giá trị của x.

Dấu "=" xảy ra khi \(x^2+5x=0\)

=> \(x\left(x+5\right)=0\)

=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy f (x) có GTNN là -17 khi \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\).

8 tháng 2 2018

\(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Do \(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow x^2+2x+3\ge2\)

Dấu = khi x=-1

1 tháng 8 2016

a,  Ta có: -4x2+4x-1=-(4x2-4x+1)<=>-((2x)2-2.2x+1)=-(2x-1)2

18 tháng 9 2020

A = -4x2 + 4x - 1

= -( 4x2 - 4x + 1 )

= -( 2x - 1 )2 ≤ 0 ∀ x

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxA = 0 <=> x = 1/2

B = 3x2 + 2x + 5

= 3( x2 + 2/3x + 1/9 ) + 14/3

= 3( x + 1/3 )2 + 14/3 ≥ 14/3 ∀ x

Đẳng thức xảy ra <=> x + 1/3 = 0 => x = -1/3

=> MinB = 14/3 <=> x = -1/3