\(\sqrt{3-x^2}\), 0<x<
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

a)  \(3\sqrt{x}-x=-\left(x-3\sqrt{x}+\frac{9}{4}-\frac{9}{4}\right)=-\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

GTLN là 9/4 tại  \(\sqrt{x}-\frac{3}{2}=0\)  \(\Leftrightarrow x=\frac{9}{4}\)

b)  \(x\sqrt{3-x^2}=\sqrt{x^2\left(3-x^2\right)}\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

GTLN là 3/2 tại  \(x^2=3-x^2\)  \(\Leftrightarrow x=\frac{\sqrt{6}}{2}\)

23 tháng 6 2017

a)Áp dụng BĐT C-S ta có:

\(A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)

\(\le\left(1+1\right)\left(x-2+4-x\right)=4\)

\(\Rightarrow A^2\le4\Rightarrow A\le2\)

Đẳng thức xảy ra khi x=3

b)Tiếp tục áp dụng BĐT C-S

\(B^2=\left(\sqrt{x}+\sqrt{2-x}\right)^2\)

\(\le\left(1+1\right)\left(x+2-x\right)=4\)

\(\Rightarrow B^2\le4\Rightarrow B\le2\)

Xảy ra khi x=1

17 tháng 8 2018

\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)

\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)

\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)

\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)

\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)

\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)

16 tháng 11 2016

Bài 1:

\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)

\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

Dấu = khi \(x=\sqrt{\frac{3}{2}}\)

Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

25 tháng 7 2017

Căn bậc hai. Căn bậc ba

d/

D chỉ có Min thôi nha bạn!

25 tháng 7 2017

Mik giải v bj sai r nha bạn!ngaingung