K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

Đặt \(A=\dfrac{2}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow\dfrac{2}{\sqrt{x}+3}\le\dfrac{2}{3}\)

\(\Rightarrow A_{max}=\dfrac{2}{3}\) khi \(x=0\) 

 

28 tháng 5 2017

\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

ĐKXĐ:x\(\ge\)1

M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)

Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)

=>không tồn tại GTLN của M

---câu thứ 2 đọc đề không hiểu---

2.ĐKXĐ:x>-1

\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)

Áp dụng BĐT cosi cho 2 số dương

\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)

Dấu = xảy ra khi x+1=2<=>x=1

=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1

28 tháng 5 2017

câu đầu thiếu đk : x > -2

Viết lại đề cho mn ( mk ko biết làm)

Tìm GTLN của :\(-x+\sqrt{x}\)

Đã biết viết dấu căn :))

10 tháng 7 2021

undefined

29 tháng 6 2016

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

18 tháng 9 2016

jkuhkuhikjhkjhkuhjkgh

26 tháng 11 2021
Âm 1/2 mũ 3 nhaan21/3 nhân âm 2 mũ 3 trừ âm 1)3
25 tháng 8 2021

Ta có \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\)

Áp dụng BĐT cosi, ta có: 

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\Leftrightarrow\dfrac{1}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le\dfrac{1}{2}\\ \Leftrightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le1\)

Vậy GTLN của \(\dfrac{2\sqrt{x}}{x+1}\) là 1. Dấu \("="\) xảy ra \(\Leftrightarrow\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)

30 tháng 7 2019

GTLN ak. bạn có nhầm đề k vậy, bạn xem lại đề đi.

30 tháng 7 2019

mình k ak

bạn giúp mình phân tích cái kia ra là đc

13 tháng 10 2019

đề như vậy đúng không ạ

\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)

ta xét \(6x-x^2-5\)

\(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-2\cdot3x+9-4\right)\)

\(=\left[\left(x-3\right)^2-4\right]\)

\(=-\left(x-3\right)^2+4\)

có \(-\left(x-3\right)^2+4\le4\)

\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)

\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)

có \(3+\sqrt{6x-x^2-5}\)

\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)

\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)

=> GTNN của Q là -3

=> GTLN của Q là -5 

với \(x-3=0;x=3\)