K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(A=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)

\(=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

Dấu ''='' xảy ra khi x = -1/2 

Vậy GTLN A là 5/4 khi x = -1/2 

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

26 tháng 12 2018

\(Taco:\)

\(|x^2-x+1|-|x^2-x-2|=|x^2-x+1|+\left(-|x^2-x-2|\right)\)

\(\ge|x^2-x+1-x^2+x+2|=3\)

Dấu "=" xảy ra khi: \(\left(x^2-x+1\right)\left(x^2-x-2\right)\ge0\Leftrightarrow........\)

a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)

b: A>0

=>x+1>0

=>x>-1

c: x^2+3x+2=0

=>(x+1)(x+2)=0

=>x=-2(loại) hoặc x=-1(loại)

Do đó: Khi x^2+3x+2=0 thì A ko có giá trị

NV
5 tháng 4 2021

Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\) nên:

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=1\)

5 tháng 4 2021

thầy giải cho em bài bài với:

Tìm GTLN: \(\dfrac{-x^2+x-10}{x^2-2x+1}\); x \(\ne\)1

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

12 tháng 2 2017

ĐK tồn tại A với mọi x

\(A=\frac{x^2-x+1}{x^2+x+1}=\frac{x^2+x+1-2x}{x^2+x+1}=1+\frac{-2x}{x^2+x+1}=1+B\) (*)

Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B

\(B=\frac{-2x}{x^2+x+1}\)

Tìm Max\(2-B=2-\frac{-2x}{x^2+x+1}=\frac{2x^2+2x+2+2x}{x^2+x+1}=\frac{2\left(x^2+2x+1\right)}{x^2+x+1}=\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)

=>\(2-B\ge0\Rightarrow B\le2\Rightarrow A\le2+1=3\)đẳng thức khi Tim Min

\(B+\frac{2}{3}=\frac{-2x}{x^2+x+1}+\frac{2}{3}\Leftrightarrow\frac{-6x+2x^2+2x+2}{3\left(x^2+x+1\right)}=\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{2\left(x-1\right)^2}{3\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\ge0\)

\(B+\frac{2}{3}\ge0\Rightarrow B\ge-\frac{2}{3}\Rightarrow A\ge1-\frac{2}{3}=\frac{1}{3}\) đẳng thức khi x=-1

Kết luận:

GTNN A=1/3 khi x=1

GTLN A=3 khi x=-1

24 tháng 12 2016

Dùng PP Miền giá trị đi bạn:
Gọi k là 1 giá trị ta có: (x² - x +1)/(x² + x +1) = k (1). Ta cần tìm k để PT (1) có nghiệm
Từ (1) ta có: (x² - x +1) = k.(x² + x +1)
<=> (1 - k)x² - (k + 1)x + (1 - k) = 0 (*)
Del ta =(k + 1)² - 4( 1 - k)² = -3k² + 10k - 3
Để (*) có nghiệm thì del ta ≥ 0
<=> -3k² + 10k - 3 ≥ 0
<=> 1/3 ≤ k ≤ 3
Vậy GTNN của A =1/3 khi (*) có nghiệm kép hay x = -b/2a=(k + 1)/2(1 - k) với k = 1/3 khi đó x = 1
(Thực ra dùng PP Miền giá trị ta còn tìm được Max A = 3 khi x = -1)

29 tháng 4 2019

Áp dụng BĐT:\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi a=b) với a=x^2,b=1 có:

\(x^4+1\ge2x^2\Leftrightarrow x^{\text{4}}+x^2+1\ge3x^2\)

\(\Leftrightarrow\frac{x^2}{x^{\text{4}}+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(x^2=1\Leftrightarrow x=1\)

Vậy maxA=1/3 khi x=1