Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=25x^2-20x+7\)
\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)
\(B=-x^2+2x-2\)
\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)
\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow x=1\)
Vậy \(maxB=-3\Leftrightarrow x=1\)
\(C=9x^2-12x\)
\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)
\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)
Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)
\(D=3-10x^2-4xy-4y^2\)
\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)
\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)
Vậy \(maxD=-3\Leftrightarrow x=y=0\)
\(E=4x-x^2+1\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)
\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)
Dấu " = " xảy ra \(\Leftrightarrow x=2\)
Vậy \(maxE=5\Leftrightarrow x=2\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
Bài 3:
b. $B=(x+y)(2x-y)+(xy^4-x^2y^2):(xy^2)$
$=(2x^2-xy+2xy-y^2)+(y^2-x)$
$=2x^2+xy-y^2+y^2-x=2x^2+xy-x$
Bài 4:
a. $25x^3-10x^2+x=x(25x^2-10x+1)=x(5x-1)^2$
b. $x^2-9x+9y-y^2=(x^2-y^2)-(9x-9y)=(x-y)(x+y)-9(x-y)=(x-y)(x+y-9)$
c. $16-x^2-4y^2-4xy=16-(x^2+4y^2+4xy)$
$=4^2-(x+2y)^2=(4-x-2y)(4+x+2y)$
a) P = 2x - x2 - 5
= - (x2 - 2x + 5)
= - (x2 - 2x + 1 + 4)
= - \(\left [ (x - 1)^{2} + 4 \right ]\)
= - (x - 1)2 - 4 \(\leq - 4\) , với mọi x
( Vì: - (x - 1)2 < 0, với mọi x, pn ghi kí hiệu nhé, chỗ này ko giải thích cũng dc)
Dấu "=" xảy ra <=> x - 1 = 0
...............................<=> x = 1
Vậy MAX P = - 4 <=> x = 1
b) Q = 4x - x2 + 1
= - (x2 - 4x - 1)
= - (x2 - 4x + 4 - 5)
= - \(\left [ (x - 2)^{2} - 5 \right ]\)
= - (x - 2)2 + 5 \(\leq 5\) với mọi x
( Vì: - (x - 2)2 < 0, với mọi x)
Dấu "=" xảy ra <=> x - 2 = 0
........................<=> x = 2
Vậy MAX Q = 5 <=> x = 2
c) M = 3 - 10x2 - 4xy - 4y2
= 3 - 9x2 - x2 - 4xy - 4y2
= 3 - 9x2 - (x2 + 4xy + 4y2)
= 3 - (3x)2 - (x + 2y)2 \(\leq \) 3 , với mọi x,y (ghi kí hiệu nhé)
Dấu ''='' xảy ra <=> \(\begin{bmatrix} 3x = 0 & & \\ x + 2y =0 & & \end{bmatrix}\)pn bỏ dấu bên phải nhé
.........................<=> \(\begin{bmatrix} x = 0 & & \\ y =0 & & \end{bmatrix}\)
Vậy MAX M = 3 <=> x = 0; y = 0