K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

A = 4x - x2 + 5

A = - (x2 - 4x + 4 ) +1

A = - ( x -2 )2 + 1

Do - (x - 2 )2  <= 0 

=>  A <= 1 

Dấu "=" xảy ra khi x -2 =0

<=> x = 2

 Vậy A min = 1 khi x =2 

28 tháng 9 2018

\(A=4x-x^2+5=-\left(x^2-4x-5\right)=-\left(x^2-4x+4-9\right)=-\left(x-2\right)^2+9\le9\forall x\)

dấu = xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Max A = 9 tại x = 2

\(B=x-x^2=-\left(x^2+x\right)=-\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

dấu = xảy ra khi: \(-\left(x+\frac{1}{2}\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max B = 1/4 tại x= -1/2

=.= hok tốt!!

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

25 tháng 9 2016

a, (x-1)(x-3)+11

=x2-3x-x+3+11

=(x-2)2+10

Vì..................................

b,5-4x2+4x

=-(4x2-4x+4)+9

=-(2x-2)2+9

...........................................................

18 tháng 10 2016

đơn giản wá 

8 tháng 7 2019

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

4 tháng 9 2017

ta có \(A=-\left(4x^2+9y^2+4x-6y-3\right)\)

              \(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\) 

                \(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

vì \(-\left(2x+1\right)^2< =0;-\left(3y-1\right)^2< =0\)

=> \(A< =5\)

               dấu = xảy ra <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

b)    ta có \(B=-\left(x^2-6x-5\right)=-\left[\left(x^2-6x+9\right)-14\right]\) 

                      \(=-\left(x-3\right)^2+14\)

mà \(-\left(x-3\right)^2< =0\) => b<=14

dấu = xảy ra  <=> \(x=3\)

3 tháng 1 2018

a)\(\left(4x+5\right)^2-2\left(4x+5\right)\left(x+5\right)+\left(x+5\right)^2\)

\(=\left(4x+5-x-5\right)^2=\left(3x\right)^2=9x^2\)

b) \(3x-x^2-4\)

\(=-x^2+2.x.1,5-2,25+2,25-4\)

\(=-\left(x-1,5\right)^2-1,75\le-1,75\)

Dấu bằng xảy ra khi : \(x-1,5=0\)

                                \(x=1,5\) 

Vậy GTLN của biểu thức trên bằng -1,75 khi x = 1,5

9 tháng 7 2017

a)

\(A=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow \left(x-2\right)^2=0\Leftrightarrow x=2\)

\(B=x^2-x=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy \(MinB=-\frac{1}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

\(C=-\left(x+1\right)^2+3\le3\)

Vậy \(MaxC=3\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)

9 tháng 7 2017

a, A= (x-2)^2 +1 >= 1

Dấu "=" xảy ra <=> x-2=0 <=>x=2

Vậy Min A= 1<=> x=2

b, B= (x-1/2)^2 - 1/4>=-1/4

Dấu "=" xảy ra <=> x-1/2 = 0<=> x= 1/2

Vậy Min B= -1/4 <=> x= 1/2

c, C = 3-(x+1)^2 <=3

Dấu "=" xảy ra <=> x+1 = 0 <=> x=-1

Vậy Max C = 3 <=> x= -1

NM
8 tháng 8 2021

a. \(A=4x-x^2+3=7-\left(x^2-4x\right)+4=7-\left(x-2\right)^2\le7\)

b.\(B=x-x^2=\frac{1}{4}-\left(x^2-x+\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)

c.\(C=2x-2x^2-5=-\frac{9}{2}-2\left(x^2-x+\frac{1}{4}\right)=-\frac{9}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{9}{2}\)

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).