Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
với mõi x ta luôn có \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2-2\ge2\)
Bt đạt GTNN là 2 tại x=1
b) \(4x^2+4x+5=\left(2x+1\right)^2+4\ge4\)
Bt đạt GTNN tlà 4 tại x = \(-\dfrac{1}{2}\)
c) \(2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
Bt đạt GTLN là -3 tại x=1
d) \(-x^2-4x=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)
Bt đạt GTLN là 4 tại x= -2
đây chỉ là gợi ý nha bn
Tìm GTNN của các biểu thức:
A= x2 - 2x - 1
= x2 - 2.x.1 + 12 - 2
= (x-1)2 - 2
Vì (x-1)2 ≥ 0
=> (x-1)2 - 2 ≥ 0 - 2 (với mọi x)
=> (x-1)2 - 2 ≥ -2
Dấu = xảy ra khi: x-1 = 0 => x=1
Vậy GTNN của A = -2 khi x = 1
a) Giá trị lớn nhất:
\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)
Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)
Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)
do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)
Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)
Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)
b) Giá trị nhỏ nhất
\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)
Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)
\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)
vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)
Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)
a) \(4-x^2+2x\)
\(=3-\left(x^2-2x-1\right)\)
\(=3-\left(x-1\right)^2\)
vì \(\left(x-1\right)^2\ge0\)
\(\Rightarrow3-\left(x-1\right)^2\le3\)
vậy \(MaxA=3\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Bài làm:
#Tìm Max của biểu thức:
\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
\(\Rightarrow A\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)
#Tìm Max và Min của B:
Tìm Min
\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)
\(\Rightarrow B\ge-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)
Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)
Tìm Max
\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
\(\Rightarrow B\le1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)
Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?
Ta có : 4 - x2 + 2x
= 5 - x2 + 2x - 1
= 5 - (x2 - 2x + 1)
= 5 - (x + 1)2
Mà : (x + 1)2 \(\ge0\forall x\)
Nên : 5 - (x + 1)2 \(\le5\forall x\)
Vây jGTLN của A là : 5 khi x = -1
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
\(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
Vậy : \(MinA=5\)khi \(x-1=0=>x=1\)
\(B=4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)^2\ge4\)
Vậy \(MInB=4\)khi \(x-2=0=>x=2\)
Ủng hộ nha
Đề sai rồi bạn ơi ! Đề phải là tìm giá trị lớn nhất chứ!
a) \(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\le5\)
Vậy MaxA=5 <=> x=1
b) \(B=4x-x^2=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)
Vậy MaxB=4 <=> x=2
\(a,2x-x^2-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của đa thức là -3 tại x=1
\(b,-x^2-4x=-x^2-4x-4+4\)
\(=-\left(x^2+4x+4\right)+4\)
\(=-\left(x+2\right)^2+4\)
vì:\(-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)
Dấu = xảy ra khi :\(-\left(x+2\right)^2=0\Rightarrow x=-2\)
vậyGTLN là 4 tại x=-2