K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

\(ĐKXĐ:x\ge2,y\ge1\)

Pt đã cho tương đương :

\(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(*)

Theo BĐT Cauchy ta có :

\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2.\sqrt{\frac{36}{\sqrt{x-2}}\cdot4\sqrt{x-2}}=24\)

\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}\cdot\sqrt{y-1}}=4\)

Do đó : \(VT\left(1\right)\ge28=VP\left(1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=11\\y=5\end{cases}}\) ( Thỏa mãn )

14 tháng 1 2020

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)

Áp dụng cô-si 

VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)

(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)

<=> x = 11 ; y = 5 ( tm ) 

Kết luận:...

14 tháng 12 2017

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^22     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=14      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M...
Đọc tiếp

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^2

2     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1

4      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M   \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)

5    tim gia tri lon nhat cua  \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

6     phan tich da thuc thanh nhan tu   \(y-5x\sqrt{y}+6x^2\)

7    cho x;y;z>0   xy+yz+xz=1   tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)

8    cho a;b;c >0 c/m   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}

11
14 tháng 7 2015

pn oi nhieu the nay ai ma giai cho het dc

bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá

NV
8 tháng 2 2020

ĐKXĐ:...

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

21 tháng 9 2017

ĐK:\(x\ge2;y\ge1\)

\(pt\Leftrightarrow\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}+4\sqrt{x-2}+\sqrt{y-1}=28\)

Áp dụng BĐT AM-GM ta có: 

\(VT=\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}+4\sqrt{x-2}+\sqrt{y-1}\)

\(\ge2\sqrt{\frac{36}{\sqrt{x-2}}\cdot4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}\cdot\sqrt{y-1}}\)

\(=2\sqrt{36\cdot4}+2\sqrt{4}=28=VP\)

Xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=38\\y=5\end{cases}}\) (thỏa)

NV
4 tháng 9 2020

ĐKXĐ; ....

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(11;5\right)\)

3 tháng 1 2017

ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)

PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)

\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)

Tới đây bạn tự giải được rồi :)

2 tháng 9 2017

Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath

tham khảo nhé 

bn cần đoa

19 tháng 10 2015

ĐKXĐ: \(x>2;y>1\)

Khi đó Pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

theo BĐT Cô si ta có \(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2.\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}=24}\)

                                  và \(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=4\)

Pt đã cho có VT>= 28 Dấu "=" xảy ra \(\Leftrightarrow\)

\(\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\Leftrightarrow x=11\)

và \(\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\Leftrightarrow y=5\)

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

19 tháng 10 2015

Ê Thắng tưởng off dòi mờ...nhanh thế....