Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(4x^2+4x+11\)
\(=\left(2x^2\right)+2\cdot2x+1-1+11\)
\(=\left(2x+1\right)^2-1+11\)
\(=\left(2x+1\right)^2+10\)
Có : \(\left(2x+1\right)^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)
Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)
\(a,A=4x^2+4x+11\)
\(A=(2x+1)^2+10\)
Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)
\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2
a) Ta có: \(A=4x^2+4x+11\)
\(\Rightarrow A=4x^2+2x+2x+11\)
\(\Rightarrow A=2x.\left(2x+1\right)+\left(2x+1\right)+10\)
\(\Rightarrow A=\left(2x+1\right).\left(2x+1\right)+10\)
\(\Rightarrow A=\left(2x+1\right)^2+10\)
Ta lại có: \(\left(2x+1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy \(A_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
Bài làm:
a) Ta có: \(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=10\Leftrightarrow x=-\frac{1}{2}\)
b) \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(B=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(B=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(B=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy \(Min_B=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
c) Ta có: \(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
a) A = 4x2 + 4x + 11
A = 4( x2 + x + 1/4 ) + 10
A = 4( x + 1/2 )2 + 10
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}^2\right)+10\ge0\)
Dấu " = " xảy ra <=> x + 1/2 = 0 => x = -1/2
Vậy AMin = 10 , đạt được khi x = -1/2
b) B = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
B = [( x - 1 )( x + 6 )][( x + 2 )( x + 3 )]
B = ( x2 + 5x - 6 )( x2 + 5x + 6 )
Đặt a = x2 + 5x
=> B = ( a - 6 )( a + 6 ) = a2 - 36
\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)
Dấu " = " xảy ra <=> a2 = 0 => a = 0
<=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy BMin = -36 , đạt được khi x = 0 hoặc x = -5
c) C = x2 - 2x + y2 - 4y + 7
C = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
C = ( x - 1 )2 + ( y - 2 )2 + 2
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy CMin = 2 , đạt được khi x = 1, y = 2
\(A=x^2+4y^2-2xy+4x-10y+2020.\)
\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)
\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)
\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)
\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)
\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(B=8x^2+y^2-4xy-12x+2y+30\)
\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)
\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)
\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)
\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)
\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)
Ta có: A = x2 + 2x + y2 - 4y - 4 = (x2 + 2x + 1) + (y2 - 4y + 4) - 9 = (x + 1)2 + (y - 2)2 - 9
Ta luôn có: (x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (x + 1)2 + (y - 2)2 - 9 \(\ge\)-9 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy Min của A = -9 tại x = -1 và y = 2
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
A(x) = x^2 -2x +y^2 +4y +6 = x^2-2x +y^2 +4y +1^2 +2^2 +1
=(x^2 -2x.1 + 1^2) + ( y^2 +2.2y+2^2) +1
=(x-1)^2+ ( y+2)^2 +1
mà (x-1)^2 >_ 0 với mọi x
(y+2)^2 >_0 với mọi y
=> GTNN của A(x) là 1
Tick cho tớ nha