Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
`A=16x^2+8x+5`
`=16x^2+8x+1+4`
`=(4x+1)^2+4>=4`
Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`
`B=x^2-x`
`=x^2-x+1/4-1/4`
`=(x-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x=1/2`
`C=a^2-2a+b^2+6b+2021`
`=a^2-2a+1+b^2+6b+9+2011`
`=(a-1)^2+(b+3)^2+2011>=2011`
Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)
Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$
$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$
$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$
$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$
Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$
$\Rightarrow x-y-6=y-1=0$
$\Rightarrow y=1; x=7$
$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$
$=2021-8=2013$
\(a=\left|x-2021\right|+\left|x-2022\right|\)
\(=\left|x-2021\right|+\left|2022-x\right|\)
\(\ge\left|x-2021+2022-x\right|=1\)
\(A=1\Leftrightarrow\left(x-2021\right)\left(2022-x\right)\ge0\)
\(\Rightarrow2021\le x\le2022\)
lại sang acc