Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=a\)
=> \(\left(a-6\right)\left(a+6\right)=a^2-36\ge-36\)
\(x\left(x+5\right)=0\) thì biểu thức nhỏ nhất
<=> x = 0 hoặc x = -5
Sau khi rút gọn thì ta được \(A=x\left(2x+3\right)\)
\(\Leftrightarrow A=2x^2+3x\)
\(\Leftrightarrow A=2\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-2.\frac{9}{4}\)
\(\Leftrightarrow A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x+\frac{3}{2}\right)^2\ge0\) nên \(2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Do đó \(A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\)\(\left(x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x+\frac{3}{2}=0\)
\(\Leftrightarrow\)\(x=\frac{-3}{2}\)
\(VậyMinA=\frac{-9}{2}tạix=\frac{-3}{2}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(A=\frac{3.\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+1+4}=3+\frac{2}{\left(x-1\right)^2+4}\ge3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x-1=0
=> x=1
\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
\(A=\frac{2x^2-4x+10+x^2-2x+7}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)+x^2-2x+5+2}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)}{x^2-2x+5}+\frac{x^2-2x+5}{x^2-2x+5}+\frac{2}{x^2-2x+5}\)
\(A=2+1+\frac{2}{x^2-2x+1+4}\)
\(A=3+\frac{2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\le3+\frac{2}{4}=\frac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)