Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo nha : https://olm.vn/hoi-dap/question/93342.html
\(E=\frac{3}{4-a}\)đạt giá trị lớn nhất khi:
4-a đạt giá trị nhỏ nhất khi:
a đạt giá trị lớn nhất(4-a không bằng 0 nên a không bằng 4)
nên a=1
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)