K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2021

c.

\(f\left(x\right)=2x^2-3x\)

\(-\dfrac{b}{2a}=\dfrac{3}{4}\notin\left[4;6\right]\)

\(f\left(4\right)=20\) ; \(f\left(6\right)=54\)

\(\Rightarrow y_{max}=54\) ; \(y_{min}=20\)

d.

\(f\left(x\right)=-2x^2+x-3\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-4;2\right]\)

\(f\left(-4\right)=-39\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{23}{8}\) ; \(f\left(2\right)=-9\)

\(\Rightarrow y_{max}=-\dfrac{23}{8}\) ; \(y_{min}=-39\)

6 tháng 11 2021

em cảm ơn cô/thầy ạ

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

27 tháng 8 2018

Đáp án C

18 tháng 2 2018

Ta có:    

+Vẽ đường thẳng y= x với x≥3  đi qua hai điểm O(0; 0) và A(1;1) và lấy phần đường thẳng bên phải của đường thẳng x= 3.

+Vẽ đường thẳng y=5x-12 với 2≤ x≤ 3 đi qua hai điểm B(3;3) và C( 2; -2) và lấy phần đường thẳng nằm giữa của hai đường thẳng x=2; x=3.

+Vẽ đường thẳng y= -x đi qua hai điểm O và D( -1; -1) và lấy phần đường thẳng bên trái của đường thẳng x= 2

+ Dựa vào đồ thị hàm số ta có:


Chọn C.

28 tháng 11 2019

Từ đề bài suy ra: 

Bảng biến thiên

Ta có y(-2) =5; y(2) =3

Dựa vào bảng biến thiên ta có

Chọn D.

19 tháng 6 2018

Đáp án A

7 tháng 2 2019

Đáp án A

24 tháng 9 2023

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} =  - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)

Hay \(S\left( { - 1;2} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số đạt giá trị nhỏ nhất bằng \(2\).

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3