Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)
\(Q=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-3\sqrt{x}-2-5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)
ủa sao không thấy gọn ta
Bài 1 :
- ĐK : x \(\ge2\)
- Ta có : \(\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(t.m\right)\)
Bài 2 :
a , \(a-\sqrt{a}+1=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}\). ( đk : a \(\ge0\) )
Dấu "=" xảy ra tại \(\sqrt{a}=\frac{1}{2}\Leftrightarrow a=\frac{1}{4}\left(t.m\right)\) . Vậy .........
b , \(ĐK:x\ge1\)
Ta có : \(x-2\sqrt{x-1}=\left(x-1\right)-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\ge0\)
Dấu "=" xảy ra tại x-1=1 <=> x= 2 (t.m) . Vậy .........
a,= \(\sqrt{x-4}-2=\sqrt{x}-4\)
=>\(x=2\)
vậy min b=0 <=> x=2
b =\(x-2\cdot2\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\)
=>\(\left(\sqrt{x}-2\right)^2+6\ge6\)
vậy min b=6 <=> x=\(\sqrt{2}\)
c \(x-2\cdot\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\)
vậy min = \(\frac{5}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)
\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)
b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)
c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
a) Biến đổi vế trái ta có:
\(x^2+x\sqrt{3}+1=x^2+2\cdot x\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}=VP\)
Vậy đẳng thức trên được chứng minh
b) \(x^2+x\sqrt{3}+1=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
Vì: \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\)
=> \(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy GTNN của biểu thức trên là \(\frac{1}{4}\) khi \(x=-\frac{\sqrt{3}}{2}\)
Thằng chó Nguyễn Đăng Khoa