Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{\left(x-1\right)}{2}.\dfrac{2}{\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)
\(\Rightarrow f\left(x\right)_{min}=\dfrac{5}{2}\) khi \(\dfrac{x-1}{2}=\dfrac{2}{x-1}\Rightarrow x=3\)
\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)
\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)
\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)
Đẳng thức \(y=25\) xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)
Hay \(x=\dfrac{2}{5}\)
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)
Đoạn đầu bạn đã biến đổi nhầm một chút nhé:
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)
\(f\left(x\right)=x+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+1\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+1=3\)
\(\Leftrightarrow f\left(x\right)\ge3\). \("="\Leftrightarrow x-1=\dfrac{1}{x-1}\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\left(x>1\right)\)
Đáp án A