\(D=\left|x+1,5\right|-5,7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

Vì \(\left|x+1,5\right|\ge0\) \(\Rightarrow\left|x+1,5\right|-5,7\ge-5,7 \)

      \(\Rightarrow D_{min}=-5,7\Leftrightarrow\left|x+1,5\right|=0\)

                                        \(\Rightarrow x+1,5=0\)

                                        \(\Rightarrow x=-1,5\)

                    Vậy \(D_{min}=-5,7\Leftrightarrow x=-1,5\)

28 tháng 8 2016

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

28 tháng 8 2016

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

30 tháng 6 2018

a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)

Dấu "=" xảy ra "=" |x| = 0 <=> x = 0

Vậy Amin = 6/13 khi và chỉ khi x = 0

b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)

Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8

Vậy Bmin = -7,9 khi và chỉ khi x = -2,8

c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)

Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5

Vậy Cmin = -5,7 khi và chỉ khi x = -1,5

7 tháng 2 2020

\(E=1,5-\left|2,7-x\right|\)

Ta thấy : \(\left|2,7-x\right|\ge0\)

\(\Leftrightarrow E=1,5-\left|2,7-x\right|\le1,5\)

Dấu " = " xảy ra 

\(\Leftrightarrow2,7-x=0\)

\(\Leftrightarrow x=2,7\)

Vậy \(Max_E=1,5\Leftrightarrow x=2,7\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

7 tháng 12 2016

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html