Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x−1)(x−2)(x−3)(x−4)+5A=(x−1)(x−2)(x−3)(x−4)+5
⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5
⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5
⇔A=(x2−5x+4)(x2−5x+6)+5⇔A=(x2−5x+4)(x2−5x+6)+5
⇔A=(x2−5x+4)[(x2−5x+4)+2]+5⇔A=(x2−5x+4)[(x2−5x+4)+2]+5
⇔A=(x2−5x+4)2+2(x2−5x+4)+5⇔A=(x2−5x+4)2+2(x2−5x+4)+5
⇔A=(x2−5x+4)2+2x2−10x+8+5⇔A=(x2−5x+4)2+2x2−10x+8+5
⇔A=(x2−5x+4)2+2x2−10x+13⇔A=(x2−5x+4)2+2x2−10x+13
⇔A=(x2−5x+4)2+2x2−10x+252+12⇔A=(x2−5x+4)2+2x2−10x+252+12
⇔A=(x2−5x+4)2+(2x2−10x+252)+12⇔A=(x2−5x+4)2+(2x2−10x+252)+12
⇔A=(x2−5x+4)2+2(x2−5x+254)+12⇔A=(x2−5x+4)2+2(x2−5x+254)+12
⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12
⇔A=(x2−5x+4)2+2(x−52)2+12⇔A=(x2−5x+4)2+2(x−52)2+12
Vậy GTNN của A=12A=12 khi ⎧⎩⎨x2−5x+4=0x−52=0{x2−5x+4=0x−52=0 ⇔⎧⎩⎨x2−5x+4=0(loai)x=52
a, \(A=x^4-2x^3+2x^2-2x+3\)
\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)
\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)
\(=\left(x^2+1\right)\left(x-1\right)^2+2\)
Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)
\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x = 1
Vậy Amin = 2 khi x = 1
b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)
đề sai ko
c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra khi x=1
Vậy Cmin = 5 khi x = 1
2/
+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)
Dấu "=" xảy ra khi x=y=1/2
Vậy Dmax=7/2 khi x=y=1/2
+) Đề sai
+)bài này là tìm min
\(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Gmin=11/4 khi x=3//2
A=(x−1)(x−2)(x−3)(x−4)+5A=(x−1)(x−2)(x−3)(x−4)+5
⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5
⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5
⇔A=(x2−5x+4)(x2−5x+6)+5⇔A=(x2−5x+4)(x2−5x+6)+5
⇔A=(x2−5x+4)[(x2−5x+4)+2]+5⇔A=(x2−5x+4)[(x2−5x+4)+2]+5
⇔A=(x2−5x+4)2+2(x2−5x+4)+5⇔A=(x2−5x+4)2+2(x2−5x+4)+5
⇔A=(x2−5x+4)2+2x2−10x+8+5⇔A=(x2−5x+4)2+2x2−10x+8+5
⇔A=(x2−5x+4)2+2x2−10x+13⇔A=(x2−5x+4)2+2x2−10x+13
⇔A=(x2−5x+4)2+2x2−10x+252+12⇔A=(x2−5x+4)2+2x2−10x+252+12
⇔A=(x2−5x+4)2+(2x2−10x+252)+12⇔A=(x2−5x+4)2+(2x2−10x+252)+12
⇔A=(x2−5x+4)2+2(x2−5x+254)+12⇔A=(x2−5x+4)2+2(x2−5x+254)+12
⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12
⇔A=(x2−5x+4)2+2(x−52)2+12⇔A=(x2−5x+4)2+2(x−52)2+12
Vậy GTNN của A=12A=12 khi ⎧⎩⎨x2−5x+4=0x−52=0{x2−5x+4=0x−52=0 ⇔⎧⎩⎨x2−5x+4=0(loai)x=52
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
Để E đạt \(GTNN\) thì tích E phải có lẻ thừa số âm .
\(\left(x-1\right)< \left(x+2\right)< \left(x+3\right)< \left(x+6\right)\)
\(\Rightarrow\begin{cases}x-1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x< 1\\x>-2\end{cases}\)
\(\Leftrightarrow-2< x< 1\)
Hoặc :
\(\begin{cases}x+3< 0\\x+6>0\end{cases}\)
\(\Rightarrow\begin{cases}x< -3\\x>-6\end{cases}\)
\(\Rightarrow-3< x< -6\).
E = (x-1)(x+2)(x+3)(x+6)
Để E nhỏ nhất thì tích E phải có lẻ thừa số âm
(x-1)<(x+2)<(x+3)<(x+6)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}\Leftrightarrow}-2< x< 1.}\)
Hoặc
\(\hept{\begin{cases}x+3< 0\\x+6>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>-6\end{cases}\Leftrightarrow}-3< x< -6.}\)
\(E=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+5\) ta được
\(E=\left(x-1\right)\left(x+1\right)\)
\(=x^2-1\)
\(x^2\ge0\) \(\Rightarrow x^2-1\ge-1\)
Dấu "\(=\)" xảy ra khi \(x=0\)
Vậy giá trị nhỏ nhất của \(E\) là \(-1\)
Em đặt t thì p là t chứ sao lại đặt t xuống dưới là x được.