K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

a) x^4-3x^2+2=(x^2-3/2)^2+2-9/4> =-1/4

đạt khi x=căn (3/2)

b)

(x^4+3)^2>= 9 đạt khi x=0

c) xem lại 

20 tháng 3 2022

a, Có \(\left(x^2-9\right)^2\)≥0   ∀ x ∈ Z

           |y-2| ≥0   ∀ y ∈ Z

⇒ Gía trị nhỏ nhất A=-1. Dấu ''='' xảy ra khi:\(\left(x^2-9\right)^2\)+|y-2|=0

                                                                 ⇒   \(x=3\) ;  \(y=2\)

Vậy.....

b, Có \(x^4\) ≥ 0 ∀ x ∈ Z

         3\(x^2\) ≥ 0 ∀ x ∈ Z

 ⇒ Giá trị nhỏ nhất của B=2. Dấu ''='' xảy ra khi: \(x^4\)+3\(x^2\)=0

                                                                         ⇒  \(x^2\left(x^2+3\right)\)=0

                                                                         ⇒  \(x^2\)             =0

                                                                         ⇒   \(x=0\)

Vậy...

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:
Vì $|y+5|\geq 0$ với mọi $y$

$\Rightarrow -2|y+5|\leq 0$ với mọi $y$

$\Rightarrow B=-2|y+5|-3\leq -3$

Vậy $B_{\max}=-3$ khi $y+5=0\Leftrightarrow y=-5$

--------------------

Vì $|x+3|\geq 0$ với mọi $x$

$\Rightarrow C=|x+3|-2\geq -2$

Vậy $C_{\min}=-2$ khi $x+3=0\Leftrightarrow x=-3$

-----------------

$|2x-1|\geq 0$ với mọi $x$

$\Rightarrow D=3|2x-1|+\frac{3}{2}\geq 3.0+\frac{3}{2}=\frac{3}{2}$

Vậy $D_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$

17 tháng 10 2021

b=-5

c=-3

d=3/2 và 1/2

15 tháng 6 2018

1) \(B=\left|x+y\right|+\left|x-3\right|+2\)

Ta có: \(\orbr{\begin{cases}\left|x+y\right|\ge0\forall x;y\\\left|x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x+y\right|+\left|x-3\right|+2\ge2\forall x;y\)

\(B=2\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+y=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

KL:............................

17 tháng 2 2018

Thay x = -2 vào biểu thức A , ta có

A   =   - 2 4   -   4 . - 2 3   +   ( - 2 )   -   3 . - 2 2   +   1   =   16   +   32   -   2   -   12   +   1   =   35

Vậy với x = -2 thì A = 35

Chọn đáp án D

15 tháng 7 2019

Thay x = -2 vào biểu thức A, ta có

A   =   ( - 2 ) 4   -   4 . ( - 2 ) 3   +   ( - 2 )   -   3 . ( - 2 ) 2   +   1   =   16   +   32   -   2   -   12   +   1   =   35

Vậy với x = -2 thì A = 35

Chọn đáp án D

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

22 tháng 7 2019

Mặc dù làm được nhưng mà đề chả rõ tí nào x2 là 2x á 

3x2 là sao ? 

7 tháng 3 2021

Ta có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y\)

=> (x - 1)2 + (y + 2)2 + 3 \(\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy Min M = 3 <=> x = 1 ; y = -2