Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+y^2-xy-x+y+1\)
\(=\left(x^2-xy+\frac{1}{4}y^2\right)-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\left(\frac{3}{4}y^2+\frac{1}{2}y+\frac{1}{12}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y\right)^2-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\frac{3}{4}\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y-\frac{1}{2}\right)^2+\frac{3}{4}\left(y+\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\forall x;y\)có GTNN là \(\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{3};y=-\frac{1}{3}\)
mình làm thế này có đúng không bạn?
ta có : \(M=x^2+y^2-xy-x+y+1\)
<=> \(2M=2x^2+2y^2-2xy-2x+2y+2\)
<=> \(2M=x^2-2xy+y^2+x^2-2x+1+y^2+2y+1\)
<=>\(2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)
<=> \(M=\frac{\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2}{2}\)\(\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-1=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y\\x=1\\y=-1\end{cases}}\)
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)
thay xy=1 và x+y=0, ta có:
\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)
\(A=\frac{3x^2+3xy+3y^2-2x^2-4xy-2y^2}{x^2+xy+y^2}=3-\frac{2\left(x+y\right)^2}{x^2+xy+y^2}\le3\)
\(A=\frac{\frac{1}{3}x^2+\frac{1}{3}xy+\frac{1}{3}y^2+\frac{2}{3}x^2-\frac{4}{3}xy+\frac{2}{3}y^2}{x^2+xy+y^2}=\frac{1}{3}+\frac{\frac{2}{3}\left(x-y\right)^2}{x^2+xy+y^2}\ge\frac{1}{3}\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm