Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ Ta có:}13B=\left(4x^2+y^2\right)\left(4+9\right)\ge\left(2.2x+1.3y\right)^2=\left(4x+3y\right)^2=1\Rightarrow B_{min}=\frac{1}{13}\)
\(\text{Dấu "=" xảy ra khi:}x=\frac{1}{13};y=\frac{3}{13}\)
Áp dụng BĐT Bunhiacopxki, ta được :
\(\left(4x^2+y^2\right)\left(2^2+3^2\right)=\left[\left(2x\right)^2+y^2\right].\left(2^2+3^2\right)\ge\left[\left(2x\right).2+y.3\right]^2=\left(4x+3y\right)^2\)
\(\Leftrightarrow\left(4x^2+y^2\right)\cdot13\ge1\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{13}\)
hay \(B\ge\frac{1}{13}\)
2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)
Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)
\(2B=2x^2+2y^2-2xy-6x-6y+4058\)
\(2B=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\)
\(\Rightarrow B\ge2020\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-3=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)
Vậy ....
\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)
\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)
\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)
Đẳng thức xảy ra khi x = 3y.
Vậy..
\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)
Dùng điểm rơi a=3
\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(M=x^2-4x+y^2-3y+2018\)
\(M=x^2-4x+4+y^2-3y+\frac{9}{4}+2015,75\)
\(M=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+2015,75\)
\(M=\left(x-2\right)^2+\left(y-\frac{3}{2}\right)^2+2015,75\)
Vì \(\left(x-2\right)^2\ge0\forall x;\left(y-\frac{3}{2}\right)^2\ge0\forall y\)
\(\Rightarrow M\ge0+0+2015,75=2015,75\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{3}{2}\end{cases}}}\)
Vậy \(M_{min}=2015,75\Leftrightarrow\hept{\begin{cases}x=2\\y-\frac{3}{2}\end{cases}}\)
\(M=x^2-4x+y^2-3y+2018\)
\(M=\left(x^2-2.x.2+2^2\right)+\left(y^2-2.y.1,5+1,5^2\right)+2011,75\)
\(M=\left(x-2\right)^2+\left(y-1,5\right)^2+2011,75\)
Ta có: \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y-1,5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-2\right)^2+\left(y-1,5\right)^2+2011,75\ge2011,75\)
\(M=2011,75\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1,5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2=0\\y-1,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1,5\end{cases}}\)
Vậy \(M_{min}=2011,75\Leftrightarrow\hept{\begin{cases}x=2\\y=1,5\end{cases}}\)