Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Cho \(x>0,y>0\)thỏa mãn\(x+y\le1\)
Tìm giá trị nhỏ nhất của: \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)
\(=4+2+5=11\)
Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)
1) Ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Rightarrow Min\)\(A=2\Leftrightarrow a=b\)
2) Ta có : xy < 0 => Một trong hai số x,y tốn tại một số âm và một số dương.
Ta xét hai trường hợp :
1. Với \(x< 0< y\), ta có :
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{-\left(x-y\right)}\left(\frac{x}{-x}+\frac{y}{y}\right)=-1-1\left(-1+1\right)=-1\)
2. Với \(y< 0< x\) ta có :
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{x-y}\left(\frac{x}{x}+\frac{y}{-y}\right)=-1+1.\left(1-1\right)=-1\)
Vậy ta kết luận : Với xy<0 thì giá trị của P là : -1
\(A=\frac{3x^2+3xy+3y^2-2x^2-4xy-2y^2}{x^2+xy+y^2}=3-\frac{2\left(x+y\right)^2}{x^2+xy+y^2}\le3\)
\(A=\frac{\frac{1}{3}x^2+\frac{1}{3}xy+\frac{1}{3}y^2+\frac{2}{3}x^2-\frac{4}{3}xy+\frac{2}{3}y^2}{x^2+xy+y^2}=\frac{1}{3}+\frac{\frac{2}{3}\left(x-y\right)^2}{x^2+xy+y^2}\ge\frac{1}{3}\)
Ta co:
\(x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)
Dau '=' xay ra khi \(x=y=1\)hoac \(x=y=-1\)
Áp dụng BĐT Cauchy cho 2 số không âm:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)(Vì x,y cùng dấu)
và \(xy+\frac{1}{xy}\ge2\sqrt{\frac{xy}{xy}}=2\)(Vì x,y cùng dấu)
\(\Rightarrow x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)(Vì \(xy+\frac{1}{xy}\ge2\left(cmt\right)\))
Vậy GTNN của \(x^2+y^2+\frac{2}{xy}\)là 4\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)