K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 7

Lời giải:

\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)

Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$

$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$

Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$

15 tháng 7 2015

\(A=\frac{\left(4x^4+16x^3+16x^2\right)+\left(40x^2+80x\right)+356}{x^2+2x+5}=\frac{4.\left(x^2+2x\right)^2+40\left(x^2+2x\right)+356}{x^2+2x+5}\)

\(=\frac{4\left[\left(x^2+2x\right)^2+10\left(x^2+2x\right)+25\right]+256}{x^2+2x+5}\)\(=\frac{4\left(x^2+2x+5\right)^2+4^4}{x^2+2x+5}=4\left[\left(x^2+2x+5\right)+\frac{4^3}{x^2+2x+5}\right]\)

Áp dụng Côsi:

\(A\ge4.2\sqrt{\left(x^2+2x+5\right).\frac{4^3}{x^2+2x+5}}=64\)

Dấu "=" xảy ra khi \(x^2+2x+5=\frac{4^3}{x^2+2x+5}\Leftrightarrow\left(x^2+2x+5\right)^2=64\Leftrightarrow x^2+2x+5=8\)(do x2+2x+5 > 0)

\(\Leftrightarrow x^2+2x-3=0\Leftrightarrow x=1\text{ hoặc }x=-3\)

Vậy GTNN của A là 64.

3 tháng 6 2017

\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)\(\left(x-3\right)^2\ge0\)\(y^2\ge0\) nên \(B\ge-2\)

đẳng thức xảy ra khi và chỉ khi \(x=3\)\(y=0\)

vậy MIN B = -2 tại x=3 và y=0

3 tháng 6 2017

mình nghĩ là theo đề thì chỗ kia phải là -4y chứ sao lại -4x nhỉ ???

5 tháng 11 2017

P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0

=> P >= -1

Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2

Vậy Min P = -1 <=> x = -2

Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0

=> P <= 4

Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2

Vậy Max P = 4 <=> x=1/2

5 tháng 11 2017

 Câu trả lời hay nhất:  Biểu diễn P: 

P = x^2 - 4x + 5 

= x^2 - 4x + 4 + 1 

= (x^2 - 4x + 4) + 1 

= (x - 2)^2 + 1 >= 1 

Vậy giá trị nhỏ nhất đạt được của P = 1 khi: 

(x - 2)^2 = 0 

<=> x - 2 = 0 

<=> x = 2

6 tháng 10 2017

\(\frac{3}{2+\sqrt{-x^2+2x+7}}\)=\(\frac{3}{2+\sqrt{8-\left(x-1\right)^2}}\)\(\le\)\(\frac{3}{2+\sqrt{8}}\)

dấu bằng khi x=1

2 tháng 10 2021

\(a,A=x-4\sqrt{x+9}=\left(x+9-4\sqrt{x+9}+4\right)-13\\ A=\left(\sqrt{x+9}-2\right)^2-13\ge-13\\ A_{min}=-13\Leftrightarrow x+9=4\Leftrightarrow x=-5\\ b,B=x-3\sqrt{x-10}=\left(x-10-3\sqrt{x-10}+\dfrac{9}{4}\right)+\dfrac{31}{4}\\ B=\left(\sqrt{x-10}+\dfrac{9}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\\ B_{min}=\dfrac{31}{4}\Leftrightarrow x-10=\dfrac{81}{16}\Leftrightarrow x=\dfrac{241}{16}\\ c,C=x-\sqrt{x+1}=\left(x+1-\sqrt{x+1}+\dfrac{1}{4}\right)-\dfrac{5}{4}\\ C=\left(\sqrt{x+1}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ C_{min}=-\dfrac{5}{4}\Leftrightarrow x+1=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{4}\)

\(d,D=x+\sqrt{x+2}=\left(x+2+\sqrt{x+2}+\dfrac{1}{4}\right)-\dfrac{9}{4}\\ D=\left(\sqrt{x+2}+\dfrac{1}{4}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ D_{min}=-\dfrac{9}{4}\Leftrightarrow\sqrt{x+2}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: \(A=x-4\sqrt{x}+9\)

\(=\left(\sqrt{x}-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=4

b: \(B=x-3\sqrt{x}-10\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{49}{4}\)

\(=\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{4}\)

7 tháng 11 2017

 0 nha bạn.

30 tháng 4 2019

\(P=\frac{x+3\sqrt{x}+2}{x}\)

ĐKXĐ : x > 0

\(\Rightarrow P=1+\frac{3}{\sqrt{x}}+\frac{2}{x}\)

Đặt \(\frac{1}{\sqrt{x}}=t\)

\(\Leftrightarrow P=2t^2+3t+1\)

\(\Leftrightarrow P=2\left(t^2+2.t.\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right)=2\left(t+\frac{3}{4}\right)^2-\frac{1}{8}\)

\(\Leftrightarrow P=2\left(t+\frac{3}{4}\right)^2+\frac{-1}{8}\)

Có \(2\left(t+\frac{3}{4}\right)^2\ge0\)

\(\Rightarrow P\ge-\frac{1}{8}\)

Vậy MIn P = -1/8 <=> t = -3/4

30 tháng 4 2019

CTV gì mà ngu vc :)) ĐKXĐ là x dương rồi mà kết quả ra âm => óc lz