Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)
Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3
Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)
Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3
ta có \(\sqrt{x-2\sqrt{x-9}}=\sqrt{\left(x-9\right)-2\sqrt{x-9}+1+8}=\sqrt{\left(1-\sqrt{x-9}\right)^2+\left(\sqrt{8}\right)^2}.\)
Tương tự ta cũng có \(\sqrt{x+2\sqrt{x-9}}=\sqrt{\left(\sqrt{x-9}+1\right)^2+\left(\sqrt{8}\right)^2}\)
Áp dụng BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) ( bẠN TỰ CM NHA)
Dấu bằng xảy ra khi ad=bc
Ta có \(A\ge\sqrt{\left(1-\sqrt{x-9}+\sqrt{x-9}+1\right)^2+\left(\sqrt{8}+\sqrt{8}\right)^2}\)
\(\Rightarrow A\ge6\)
Dấu bằng xảy ra khi \(\left(1-\sqrt{x-9}\right)\sqrt{8}=\left(\sqrt{x-9}+1\right)\sqrt{8}\)
hay X = 9
Vậy Min A= 6 khi X=9
Điều kiện: x\(\ge\)9
\(A=\sqrt{x-2\sqrt{x-5-4}}+\sqrt{x+2\sqrt{x-5-4}}=\sqrt{x-2\sqrt{x-9}}+\sqrt{x+2\sqrt{x-9}}\)
\(A=\sqrt{x-9-2\sqrt{x-9}+1+8}+\sqrt{x-9+2\sqrt{x-9}+1+8}\)
\(A=\sqrt{\left(\sqrt{x-9}-1\right)^2+8}+\sqrt{\left(\sqrt{x-9}+1\right)^2+8}\)
Ta nhận thấy: \(\sqrt{\left(\sqrt{x-9}-1\right)^2+8}\ge\sqrt{8}\) Và \(\sqrt{\left(\sqrt{x-9}+1\right)^2+8}>\sqrt{9}\)Với mọi x\(\ge\)9
=> A đạt giá trị nhỏ nhất khi \(\left(\sqrt{x-9}-1\right)^2=0\) <=> x=10
=> Giá trị nhỏ nhất của A là: \(\sqrt{8}+\sqrt{12}=2\sqrt{2}+2\sqrt{3}=2\left(\sqrt{2}+\sqrt{3}\right)\)
Điều kiện để \(\sqrt{x-4}\)có nghĩa \(\Leftrightarrow x-4\ge0\Leftrightarrow x\ge4\)
Điều kiện để \(\sqrt{y-3}\)có nghĩa \(\Leftrightarrow y-3\ge0\Leftrightarrow y\ge3\)
Từ đó \(\Rightarrow x+y\ge3+4\Rightarrow x+y>5\)
Từ đó ta có thể kết luận là biểu thức B không có nghĩa bạn nhé ^^ vì vậy không có GTNN đâu ạ.
Bạn kiểm tra lại đề bài hộ mình nha.
Chúc bạn buổi tối vui vẻ ^^
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)
Dấu "=" xảy ra khi \(x=0\)
\(x-5\sqrt{x}=x-5\sqrt{x}+\frac{25}{4}\)\(-\frac{25}{4}\)
=\(\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu = xảy ra khi x=25/4