K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

\(maxB=5\Leftrightarrow x=2\)

15 tháng 9 2021

MinA=0

⇔x=1 hoặc x=-3 hoặc x=-2 hặc x=-6

B\(=-x^2+2x+1+2x\)

\(=-\left(x^2-2x+1\right)+2\left(1+x\right)\)

\(=-\left(x-1\right)^2-2\left(x-1\right)\)

 

1 tháng 5 2017

tui hỏng biết chỉ tui đi hay k cũng được!

bài này tìm GTLN thì có lẽ hay hơn -,- 

C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)

+) Nếu \(A=1\) thì \(x=-2\)

+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)

                                                        \(\Leftrightarrow\)\(A^2-10A\le0\)

                                                        \(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)

                                                        \(\Leftrightarrow\)\(0\le A\le10\)

\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

9 tháng 8 2016

(4x-4x+1) + (x+ \(\frac{1}{4x}\)-2)+ 2016=(2x-1)2 +(√x  -√ \(\frac{1}{4x}\))2 >=2016 đạt giá trị nhỏ nhất khi x=0,5

NM
1 tháng 9 2021

ta có :

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)

Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)

9 tháng 7 2019

Ta có:

\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{x^2-4x+8}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=2\)

Bài toán không có giá trị nhỏ nhất.Giải toán có sự trợ giúp của Wolfram|Alpha