K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:
Ta có:
\(y=\sqrt[3]{x^4+16x^2+64}-3\sqrt[3]{x^2+8}+1\)

\(=\sqrt[3]{(x^2+8)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\geq \sqrt[3]{8}=2\)

Khi đó:

\(y=t^2-3t+1=t(t-2)-(t-2)-1\)

\(=(t-1)(t-2)-1\)

\(t\geq 2\Rightarrow (t-1)(t-2)\geq 0\Rightarrow y\geq 0-1=-1\)

Vậy GTNN của hàm số là $-1$ khi \(t=2\) hay $x=0$

3 tháng 12 2019

Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:

x=0 ra kq:-504

x=1 ra kq:-515(GTNN)

x=2 ra kq:-472

x=3 ra kq:-339(GTLN)

3 tháng 11 2023

A là đáp án đúng!

loading...  loading...  

9 tháng 11 2023

Mấy cái bước suy ra ≥;≤ là có công thức hay là định lý gì không ạ ?

3 tháng 2 2021

ĐKXĐ : \(-1\le x\le3\)

- ADbu nhi : \(\left(\sqrt{x+1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(\left(\sqrt{x+1}\right)^2+\left(\sqrt{3-x}\right)^2\right)\)

\(=2\left(x+1+3-x\right)=2.4=8\)

\(\Rightarrow\sqrt{x+1}+\sqrt{3-x}\le\sqrt{8}=2\sqrt{2}\)

- Dấu " = " xảy ra \(\Leftrightarrow\dfrac{1}{\sqrt{x+1}}=\dfrac{1}{\sqrt{3-x}}\)

\(\Leftrightarrow x+1=3-x\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(\Rightarrow Max_{f\left(x\right)}=2\sqrt{2}\) tại x = 1.

- Có : \(\sqrt{x+1}+\sqrt{3-x}\ge\sqrt{x+1+3-x}=\sqrt{4}=2\)

- Dấu " = " xảy ra <=> x = -1 ( TM )

\(\Rightarrow Min_{f\left(x\right)}=2\) tại x = - 1 .

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

NV
30 tháng 12 2020

Chắc bạn ghi nhầm căn thức thứ 2

\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)

\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)

\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)

\(A\le18\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=4\)