Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có m a x [ 1 ; 2 ] y + m i n [ 1 ; 2 ] y = y ( 1 ) + y 2 = m + 1 2 + m + 2 3 = 16 3 ⇒ 5 m + 7 6 = 16 3
⇔
5
m
+
7
=
32
⇒
m
=
5
Đáp án C
Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .
Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3 trên R
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Ta có bảng biến thiên sau:
Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.
Chọn A.
(I) sai f xđ trên R
(II) sai hs có 2 điểm cực trị
(III) ,(IV) đúng
Đáp án C
Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy
Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.
Đáp án D
Với x ∈ − 2 ; 1 ta có
y = − x 2 + 2 ⇒ y ' = − 2 x ; y ' = 0 ⇔ x = 0.
Ta có y − 2 = − 2 ; y 0 = 2 ; y 1 = 1
Xét x ∈ 1 ; 3 ta có
y = x ⇒ y ' = 1 > 0.
Ta có y 3 = 3
Suy ra max − 2 ; 3 y = 3
Đáp án B
Hàm bậc nhất trên bậc nhất luôn đồng biến hoặc nghịch biến trên tập xác định của nó
⇒ min y 2 ; 3 = min y 2 ; y 3 = min 3 ; 2 = 2