Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)
\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)
\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)
Đẳng thức \(y=25\) xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)
Hay \(x=\dfrac{2}{5}\)
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)
Đoạn đầu bạn đã biến đổi nhầm một chút nhé:
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)
1) b)
Phương trình trên tương đương
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)
ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)
\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(-2=x^3+4x^2-2x^2-8x-33x-132\)
\(x^3+2x^2-41x-130=0\)
\(x^3+5x^2-3x^2-15x-26x-130=0\)
\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)
\(\left(x^2-3x-26\right)\left(x+5\right)=0\)
\(\Rightarrow x=-5\)(Loại)
\(x^2-3x-26=0\)
Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác
\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)
\(x_1=\dfrac{3-\sqrt{113}}{2}\)
\(x_2=\dfrac{3+\sqrt{113}}{2}\)
Phương trình có 2 nghiệm trên
5) 0<a<b, ta có: a<b
<=> a.a<a.b
<=>a2<a.b
<=>\(a< \sqrt{ab}\)(1)
- BĐT Cauchy:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)
\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)
Dấu = xảy ra khi a=b=0 mà 0<a<b
=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)
- 0<a<b, ta có: a<b<=> a+b<b+b
\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)
Từ (1), (2), (3), ta có đpcm
pt(1)\(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow\dfrac{4\left(x-3\right)^2}{12}-\dfrac{\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow\dfrac{\left(2x-6\right)^2-\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow-5\cdot\left(4x-7\right)\le12x\)
\(\Leftrightarrow-20x+35\le12x\)
\(\Leftrightarrow32x\ge35\)
\(\Leftrightarrow x\ge\dfrac{35}{32}\left(1\right)\)
Pt(2)\(\Leftrightarrow2+x+1< \dfrac{12-x+1}{4}\)
\(\Leftrightarrow x+3< \dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12< 13-x\)
\(\Leftrightarrow5x< 1\)
\(\Leftrightarrow x< \dfrac{1}{5}\left(2\right)\)
(1) và (2) mâu thuẫn =>không có x tm cả 2 bpt trên
a: TH1: x>=2
=>2x-4<=x+12
=>x<=16
=>2<=x<=16
TH2: x<2
=>4-2x<=x+12
=>-3x<=8
=>x>=-8/3
=>-8/3<=x<2
b: TH1: x>=1
BPT sẽ là \(\dfrac{x-1}{x+2}< 1\)
=>(x-1-x-2)/(x+2)<0
=>x+2<0
=>x<-2(loại)
TH2: x<1
BPT sẽ là \(\dfrac{1-x}{x+2}-1< 0\)
=>(1-x-x-2)/(x+2)<0
=>(-2x-1)/(x+2)<0
=>(2x+1)/(x+2)>0
=>x>-1/2 hoặc x<-2
=>-1/2<x<1 hoặc x<-2
a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3
Tập xác định của y = là:
D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +∞)\{-1}
Có thể viết cách khác: D = [-3, -1] ∪ (-1, +∞)
b) Tập xác định
D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}
= [-∞, 2323 ]∩(-∞, 1212) = (-∞, 1212)
c) Tập xác định là:
D = [1, +∞) ∪ (-∞,1) = R
a/ \(y=\dfrac{3x}{4}+\dfrac{x}{4}+\dfrac{1}{x}\ge\dfrac{3x}{4}+2\sqrt{\dfrac{x}{4}.\dfrac{1}{x}}\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
\(\Rightarrow y_{min}=\dfrac{5}{2}\) khi \(x=2\)
b/ \(y=\dfrac{x^3}{2}+\dfrac{x^3}{2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}\ge5\sqrt[5]{\dfrac{x^3}{2}.\dfrac{x^3}{2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}}=\dfrac{5}{\sqrt[5]{4}}\)
\(\Rightarrow y_{min}=\dfrac{5}{\sqrt[5]{4}}\) khi \(x=\sqrt[5]{2}\)
a: =>4x+12<=2x-1
=>2x<=-13
=>x<=-13/2
b: =>x^2-2x+1+4<0
=>(x-1)^2+4<0(loại)
c: =>(x-2+x+3)/(x+3)<0
=>(2x+1)/(x+3)<0
=>-3<x<-1/2
a)
<=> f(x) = .
Xét dấu của f(x) ta được tập nghiệm của bất phương trình:
T = ∪ [3; +∞).
b)
<=> f(x) = = .
f(x) không xác định với x = ± 1.
Xét dấu của f(x) cho tập nghiệm của bất phương trình:
T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3).
c) <=> f(x) =
= .
Tập nghiệm: \(\left(-12;-4\right)\cup\left(-3;0\right)\).
ta có : \(y=\dfrac{3}{x}+\dfrac{12}{1-2x}=\left(\dfrac{3}{x}-6\right)+\left(\dfrac{12}{1-2x}-12\right)+18\)
\(y=\dfrac{3-6x}{x}+\dfrac{24x}{1-2x}+18=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\)
vì \(0< x< \dfrac{1}{2}\) \(\Rightarrow\dfrac{3\left(1-2x\right)}{x}>0\) và \(\dfrac{24x}{1-2x}>0\)
áp dụng bất đẳng thức AM - GM cho 2 số : \(\dfrac{3\left(1-2x\right)}{x}>0\) và \(\dfrac{24x}{1-2x}>0\)
ta có : \(\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}\ge2\sqrt{\dfrac{3\left(1-2x\right)}{x}.\dfrac{24x}{1-2x}}=12\sqrt{2}\)
\(\Rightarrow\) \(y=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\ge18+12\sqrt{2}\)
\(\Rightarrow\) giá trị nhỏ nhất của \(y\) là \(18+12\sqrt{2}\)
dấu " = " xảy ra khi và chỉ khi \(\dfrac{3\left(1-2x\right)}{x}=\dfrac{24x}{1-2x}\)
\(\Leftrightarrow3\left(1-2x\right)^2=24x^2\) \(\Leftrightarrow3\left(1-4x+4x^2\right)=24x^2\)
\(\Leftrightarrow3-12x+12x^2=24x^2\Leftrightarrow12x^2+12x-3=0\)
\(\Delta'=\left(6\right)^2-12.\left(-3\right)=36+36=72>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x=\dfrac{-6+\sqrt{72}}{12}=\dfrac{-1+\sqrt{2}}{2}\) ; \(x=\dfrac{-6-\sqrt{72}}{12}=\dfrac{-1-\sqrt{2}}{2}\)
vậy giá trị nhỏ nhất của \(y\) là \(18+12\sqrt{2}\)
và dấy " = " xảy ra khi và chỉ khi \(x=\dfrac{-1\pm\sqrt{2}}{2}\)