Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
TA có: \(y=-x^4+4x^2-3\)
\(=-\left(x^4-4x^2+4\right)+1\)
\(=-\left(x^2-1\right)^2+1\le1\)
Vì \(y\in\left[-2;3\right]\)
=>..........................
Đến đây dễ rồi bạn tự làm nốt nhé
\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)
\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)
\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)
Đẳng thức \(y=25\) xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)
Hay \(x=\dfrac{2}{5}\)
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)
Đoạn đầu bạn đã biến đổi nhầm một chút nhé:
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)
Bảng biến thiên là:
x | -\(\infty\) -3/4 +\(\infty\) |
y | -\(\infty\) -29/4 +\(\infty\) |
b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4
GTNN của hàm số là y=-29/4 khi x=-3/4
\(y=4\left(x-2\right)+\dfrac{9}{x-2}+8\ge2\sqrt{\dfrac{36\left(x-2\right)}{x-2}}+8=20\)
\(y_{min}=20\) khi \(x=\dfrac{7}{2}\)