Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)
\(=-\left(x-3\right)^2+10\)
\(=10-\left(x-3\right)^2\le10\) ( vì \(\left(x-3\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
Vậy Max A = 10 tại x=3.
\(B1,a,A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\ge2\)
Dấu "=" <=> x=3
Vậy ..........
\(b,B=x^2-20x+101\)
\(=\left(x^2-20x+100\right)+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" <=> x = 10
Vậy .
\(2,a,A=4x-x^2+3\)
\(=7-\left(x^2-4x+4\right)\)'
\(=7-\left(x-2\right)^2\le7\)
Dấu ''='' <=> x = 2
Vậy .
\(b,B=-x^2+6x-11\)
\(=-2-\left(x^2-6x+9\right)\)
\(=-2-\left(x-3\right)^2\le-2\)
Dấu ""=" <=> x = 3
Vậy..
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
GTLN đúng hơn
a) A = 6x - x^2 + 1
=-x2+6x-9+10
=-(x2-6x+9)+10
=-(x-3)2+10\(\le10\) (với mọi x)
Dấu "=" xảy ra khi: x=3
Vậy GTLN của A là 10 tại x=3
b)B=-x2-12x+24
=-x2-12x-36+60
=-(x2+12x+36)+60
=-(x+6)2+60\(\le\) 60 (với mọi x)
Dấu "=" xảy ra khi x=-6
Vậy GTLN của B là 60 tại x=-6
Bài làm:
a) \(A=\left(x^2-x\right)\left(x^2+3x+2\right)=x\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=\left(x^2+x\right)\left(x^2+x-2\right)\)
Đặt \(x^2+x-1=t\)\(\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\left(\forall t\right)\)
Dấu "=" xảy ra khi: \(t^2=0\Leftrightarrow\left(x^2+x-1\right)^2=0\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}-\frac{\sqrt{5}}{2}=0\\x+\frac{1}{2}+\frac{\sqrt{5}}{2}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{\sqrt{5}+1}{2}\end{cases}}\)
b) Ta có: \(B=x^4+\left(x-2\right)^4+6x^2\left(x-2\right)^2=\left[x^4+2x^2\left(x-2\right)^2+\left(x-2\right)^4\right]+4x^2\left(x-2\right)^2\)
\(=\left[x^2+\left(x-2\right)^2\right]^2+\left[2x\left(x-2\right)\right]^2\ge2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phần b hơi sai sai nên bn xem phần a thôi nhé
Sửa lại câu b
\(B=x^4+\left(x-2\right)^4+6x^2\left(x-2\right)^2\)
\(=x^4+x^4-8x^3+24x^2-32x+16+6x^4-24x^3+24x^2\)
\(=8x^4-32x^3+48x^2-32x+16\)
\(=8\left(x^4-4x^3+6x^2-4x+1\right)+8\)
\(=8\left(x-1\right)^4+8\ge8\)
=> min B = 8 tại x = 1
`B = -x^2 + 6x - 2`
`= -x^2 + 6x - 9 + 7`
`= -(x^2 - 2.3x + 3^2) + 7`
`= -(x - 3)^2 + 7`
Do `-(x - 3)^2 <=0` với mọi x
`=> -(x - 3)^2 + 7 <= 7` với mọi x
Dấu = có khi:
`x - 3= 0 `
`<=> x = 3`
Vậy ...