K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2024

`B = -x^2 + 6x - 2`

`= -x^2 + 6x - 9 + 7`

`= -(x^2 - 2.3x + 3^2) + 7`

`= -(x - 3)^2 + 7`

Do  `-(x - 3)^2 <=0` với mọi x

`=> -(x - 3)^2 + 7 <= 7` với mọi x

Dấu = có khi: 

`x - 3= 0 `

`<=> x = 3`

Vậy ...

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

9 tháng 7 2015

1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)

         \(=-\left(x-3\right)^2+10\)

         \(=10-\left(x-3\right)^2\le10\)  ( vì  \(\left(x-3\right)^2\ge0\) với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

Vậy Max A = 10 tại x=3.

 

30 tháng 8 2016

A=(x+5/2)^2+11/2  \(\ge\)11/2

dấu bằng xảy ra khi x=-5/2

B=\(-\left(x-3\right)^2+4\le4\)

dấu bằng xảy ra khi x=3

18 tháng 12 2018

\(B1,a,A=x^2-6x+11\)

               \(=\left(x^2-6x+9\right)+2\)

                \(=\left(x-3\right)^2+2\ge2\)

Dấu "=" <=> x=3

Vậy ..........

\(b,B=x^2-20x+101\)

        \(=\left(x^2-20x+100\right)+1\)

         \(=\left(x-10\right)^2+1\ge1\)

Dấu "=" <=> x = 10

Vậy .

\(2,a,A=4x-x^2+3\)

            \(=7-\left(x^2-4x+4\right)\)'

             \(=7-\left(x-2\right)^2\le7\)

Dấu ''='' <=> x = 2

Vậy .

\(b,B=-x^2+6x-11\)

       \(=-2-\left(x^2-6x+9\right)\)

        \(=-2-\left(x-3\right)^2\le-2\)

Dấu ""=" <=> x = 3

Vậy..

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

15 tháng 6 2016

 

GTLN đúng hơn

a) A = 6x - x^2 + 1

=-x2+6x-9+10

=-(x2-6x+9)+10

=-(x-3)2+10\(\le10\) (với mọi x)

Dấu "=" xảy ra khi: x=3

Vậy GTLN của A là 10 tại x=3

b)B=-x2-12x+24

=-x2-12x-36+60

=-(x2+12x+36)+60

=-(x+6)2+60\(\le\) 60 (với mọi x)

Dấu "=" xảy ra khi x=-6

Vậy GTLN của B là 60 tại x=-6

 

20 tháng 7 2020

Bài làm:

a) \(A=\left(x^2-x\right)\left(x^2+3x+2\right)=x\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

\(=\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=\left(x^2+x\right)\left(x^2+x-2\right)\)

Đặt \(x^2+x-1=t\)\(\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\left(\forall t\right)\)

Dấu "=" xảy ra khi: \(t^2=0\Leftrightarrow\left(x^2+x-1\right)^2=0\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}-\frac{\sqrt{5}}{2}=0\\x+\frac{1}{2}+\frac{\sqrt{5}}{2}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{\sqrt{5}+1}{2}\end{cases}}\)

b) Ta có: \(B=x^4+\left(x-2\right)^4+6x^2\left(x-2\right)^2=\left[x^4+2x^2\left(x-2\right)^2+\left(x-2\right)^4\right]+4x^2\left(x-2\right)^2\)

\(=\left[x^2+\left(x-2\right)^2\right]^2+\left[2x\left(x-2\right)\right]^2\ge2\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Phần b hơi sai sai nên bn xem phần a thôi nhé

26 tháng 7 2020

Sửa lại câu b 

\(B=x^4+\left(x-2\right)^4+6x^2\left(x-2\right)^2\)

\(=x^4+x^4-8x^3+24x^2-32x+16+6x^4-24x^3+24x^2\)

\(=8x^4-32x^3+48x^2-32x+16\)

\(=8\left(x^4-4x^3+6x^2-4x+1\right)+8\)

\(=8\left(x-1\right)^4+8\ge8\)

=> min B = 8 tại x = 1