Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Đặt \(K=4x^2+2y^2+4xy-16x-12y+5\)
\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)
\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)
Mà \(\left(2x+y-4\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow K\ge-15\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
a=[(2x)^2+2.2x.3+3^2]+(y^2-2y+1)+2014
=(2x+3)^2+(y-1)^2+2014
ta thấy
2x+3)^2>=0 voi moi x
(y-1)^2>=0 voi moi y
=>(2x+3)^2+(y-1)^2+2014>=2014
a>=2014 dấu = xay ra khi;
2x+3)^2=0 va (y-1)^2=0
=>x=-3/2:y=1
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
Đa thức = (4x^2-4x+1) + (y^2-2y+2) + 1
= (2x-1)^2 + (y-1)^2 + 1>=1
Dấu "=" xảy ra <=> x=1/2 ; y=1
Vậy Min đa thức = 1<=> x=1/2 ; y=1
\(A=4x^2-4x+1+y^2-2y+1+1=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
=> A\(\ge1\)
dấu = ảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)