K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(C=4,5\cdot\left|2x-0,5\right|-0,25\)

Do \(\left|2x-0,5\right|\ge0\)

=> \(C=4,5\cdot\left|2x-0,5\right|-0,25\ge-0,25\)

Dấu bằng xảy ra khi và chỉ khi \(\left|2x-0,5\right|=0\)hay \(\left|2x-\frac{1}{2}\right|=0\)=> \(2x=\frac{1}{2}\)=> \(x=\frac{1}{2}:2=\frac{1}{4}\)

Vậy Cmin = -1/4 khi x = 1/4

\(D=-\left|3x+4,5\right|+0,75\)

Do \(\left|3x+4,5\right|\ge0\)

=> \(-\left|3x+4,5\right|\le0\)

=> \(D=-\left|3x+4,5\right|+0,75\le0,75\)

Dấu bằng xảy ra khi và chỉ khi \(\left|3x+4,5\right|=0\)=> \(\left|3x+\frac{9}{2}\right|=0\)=> \(3x=-\frac{9}{2}\)=> x = \(-\frac{9}{2}:3=\frac{-9}{6}=\frac{-3}{2}\)

Vậy Dmax = 0,75 khi x = -3/2

\(E=\left|x-2005\right|+\left|x-2004\right|\)

\(=\left|x-2005\right|+\left|2004-x\right|\)

\(\ge\left|x-2005+2004-x\right|=\left|-1\right|=1\)

Vậy \(E\ge1\), E đạt giá trị nhỏ nhất là 1 khi \(2004\le x\le2005\)

17 tháng 2 2016

bài 1 , a= 2004! : 7 nha

bài 2:x =2

20 tháng 4 2017

1. a = 2004 

2. x = 2

Đúng 100%

Đúng 100%

Đúng 100%

22 tháng 12 2016

Ta có : \(\left|2004-x\right|+\left|2003-x\right|\)

\(\Rightarrow\left|2004-x\right|+\left|2003-x\right|\ge\left|2004-x+x-2003\right|=1\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(2004-x\right).\left(x-2003\right)\ge0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2004-x\ge0\\x-2003\ge0\end{array}\right.\\\hept{\begin{cases}2004-x\le0\\x-2003\le0\end{array}\right.\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\le2004\\x\ge2003\end{array}\right.\\\hept{\begin{cases}x\ge2004\\x\le2003\end{array}\right.\end{array}\right.\)

\(\Rightarrow2003\le x\le2004\)

Vậy : Giá trị nhỏ nhất của \(D=1\Leftrightarrow2003\le x\le2004\)

14 tháng 2 2020

làm kiểu j vậy

5 tháng 12 2016

d)\(D=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\)

\(\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Rightarrow2\le x\le3\)

Vậy \(Min_D=4\) khi \(2\le x\le3\)