Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-3+\left|\frac{3}{4}x-\frac{2}{5}\right|\Leftrightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\) . Có: \(\left|\frac{3}{4}x-\frac{2}{5}\right|\ge0\)
\(\Rightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\ge-3\) . Dấu = xảy ra khi: \(\left|\frac{3}{4}x-\frac{2}{5}\right|=0\Rightarrow x=\frac{8}{15}\)
Vậy: \(Min_C=-3\) tại \(x=\frac{8}{15}\)
a)Vì \(-|x-3,5|\le0;\forall x\)
\(\Rightarrow0,5-|x-3,5|\le0,5-0;\forall x\)
Hay \(A\le0,5-0;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3,5=0\)
\(\Leftrightarrow x=3,5\)
Vậy MAX A=0,5 \(\Leftrightarrow x=3,5\)
b) Vì \(-|1,4-x|\le0;\forall x\)
\(\Rightarrow-|1,4-x|-2\le0-2;\forall x\)
Hay \(B\le-2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow1,4-x=0\)
\(\Leftrightarrow x=1,4\)
Vậy MAX B=-2 \(\Leftrightarrow x=1,4\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Vì \(|x^2+\frac{1}{10}|\ge0\)\(\forall x\)
\(\Rightarrow\frac{9}{10}+|x^2+\frac{1}{10}|\ge\frac{9}{10}\)\(\forall x\)
hay \(C\ge\frac{9}{10}\)
\(\Rightarrow maxC=\frac{9}{10}\Leftrightarrow x^2+\frac{1}{10}=0\)
\(\Leftrightarrow x^2=\frac{-1}{10}\)
\(\Leftrightarrow x=\sqrt{\frac{-1}{10}}\)hoặc \(x=-\sqrt{\frac{-1}{10}}\)( vô lý )
Vậy \(x\in\varnothing\)