K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

A=|2x - 1| + 5 

Ta có: |2x - 1| >= 0 với mọi

|2x - 1| + 5 >= 0 + 5 

A >= 5

=>GTNN của A = 5, dấu "=" xảy ra khi 2x - 1 = 0 

2x = 0 + 1 

2x = 1 

x = 1/2

12 tháng 7 2018

\(a,A=4+\left|x-\frac{2}{5}\right|\)

Có \(\left|x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow A\ge4+0=4\)

Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

7 tháng 3 2020

Bài này là GTNN nhé :

Ta có : \(\left|6-2x\right|\ge0\forall x\)

\(\Rightarrow\left|6-2x\right|-5\ge-5\forall x\)

Hay : \(B\ge-5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|6-2x\right|=0\)

\(\Leftrightarrow x=3\)

Vậy : min \(B=-5\) tại \(x=3\)

7 tháng 8 2015

\(A=3,7+\left|2x+5\right|\)

  \(Ta\) \(có:\)  \(\left|2x+5\right|\ge0\) với mọi x

                    \(3,7+\left|2x+5\right|\ge0+3,7\)

                  \(A\ge3,7\) với mọi x

Dấu ''='' xảy ra khi và chỉ khi:

 2x+5=0

 2x    = -5

   x= \(-2,5\) 

vậy min A = 3,7 khi x = 2,5

b)  |3x - 5,2|

ta có: |3x - 5,2| \(\ge0\)   

dấu ''='' xảy ra khi và chỉ khi:

 3x-5,2=0

  3x     = 5,2

   x      = \(\frac{26}{15}\) 

vậy min B = 0 khi x= \(\frac{26}{15}\)

 

7 tháng 8 2015

Vì GTTĐ luôn lớn hơn bằng 0 ( DẤu bằng xảy ra khi biểu thức trong GTTĐ = 0 ) áp đụng ta có :

a) A =\(3,7+l2x+5l\ge3,7+0=3,7\)

VẬy GTNN của A là 3,7 khi 2x + 5 = 0 => x = -5/2 

b) l3x - 5,2 l >= 0 

VẬy GTNN của B là 0 khi 3x -5,2 = 0 => x= 26/15

3 tháng 2 2018

nhỏ nhất là ko xác định đc

lớn nhất là ko xác định đc

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

3 tháng 1 2018

1, A= 2x2+1

Ta có : 2x2\(\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\)

Dấu ''='' xảy ra <=> x=0

Vậy Min A = 1 khi x =0

2.B=2(x - 1)2+4

Ta có 2(x - 1)2\(\ge0\forall x\)

=> B\(\ge4\)

Dấu ''='' xảy ra khi x = 1

Vậy Min B = 4 khi x =1