K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

a) Sửa đề \(A=25x^2+3y^2-10x+11\)

\(A=25x^2-10x+1+3y^2+10\)

\(A=\left(5x-1\right)^2+3y^2+10\)

\(\left(5x-1\right)^2\ge0\) với mọi x

\(3y^2\ge0\) với mọi y

\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y

\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)

Amin = 10

\(\Leftrightarrow5x-1=0\)\(3y^2=0\)

\(\Rightarrow5x=1\)\(y^2=0\)

\(\Rightarrow x=\dfrac{1}{5}\)\(y=0\)

Vậy Amin = 10 <=> x = 1/5 và y = 0

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Rightarrow B=5x^2+5\)

\(5x^2\ge0\) với mọi x

\(\Rightarrow5x^2+5\ge5\)

=> Bmin = 5

<=> 5x2 = 0

=> x2 = 0

=> x = 0

Vậy Bmin = 5 <=> x = 0

c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)

\(C=x^2-6x+9+x^2-22x+121\)

\(C=2x^2-28x+130\)

\(C=2\left(x^2-14x+65\right)\)

\(C=2\left(x^2-2.x.7+7^2+16\right)\)

\(C=2\left(x-7\right)^2+16.2\)

\(C=2\left(x-7\right)^2+32\)

\(2\left(x-7\right)^2\ge0\) với mọi x

=> \(2\left(x-7\right)^2+32\ge32\)

=> Cmin = 32

<=> x - 7 = 0 => x = 7

Vậy Cmin = 32 <=> x = 7

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

11 tháng 8 2016

\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)

Dấu = xảy ra \(\Leftrightarrow x=3\)

11 tháng 8 2016

\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

7 tháng 7 2017

( x - 1) ( x + 6 ) ( x + 2 ) ( x + 3 ) 

<=> ( x2 + 6x - x - 6 ) ( x2 + 3x + 2x + 6)

<=> ( x2 - 5x )2 lun nhỏ hơn 0 

Nên dấu " =" xảy ra khi ( x2- 5x)2 = 0

x2 - 5x= 0 <=> x ( x - 5) = 0 <=> x=0 hoặc 5 

^^ Học tốt nha!!!!

7 tháng 7 2017

a) Ta có : 4x2 + 4x + 11

= (2x)2 + 4x + 11

= (2x)2 + 4x + 1 + 10

= (2x + 1)2 + 10

Mà (2x + 1)2 \(\ge0\forall x\)

Nên (2x + 1)2 + 10 \(\ge10\forall x\)

Vậy GTNN của biểu thức là : 10 khi x = \(-\frac{1}{2}\)

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...