K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

\(\infty\)

4 tháng 11 2016

\(Min\)\(A=100\)

khi và chỉ khi \(\orbr{\begin{cases}x=102\\x=2\end{cases}}\)

12 tháng 4 2016

vì vế trái mỗi số luôn lớn hơn hoặc bằng 0 nên tổng lớn hơn hoặc bằng 0

=>5x-10 dương=>x dương x>2

vì x dương như lập luận thì có thể phá dấu

x+1+x-2+x+7=5x-10

3x+6=5x-10

3x=5x-10-6

2x=16

x=8

chúc học tốt

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22
10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

31 tháng 1 2017

Ta có (x+1)^2\(\ge0với\forall x\)  (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)

=>B=(x+1)^2+(y+3)^2+1\(\ge1\)

31 tháng 1 2017

thanks bn nha !!!:D:D

7 tháng 10 2018

\(A=|x-2006|+|2007-x|\ge|x-2006+2007-x|=1\)

Dấu "=" xảy ra khi: \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow\left(x-2006\right)\left(x-2007\right)\le0\)

Mà \(x-2006>x-2007\Rightarrow\hept{\begin{cases}x-2006\ge0\\x-2007\le0\end{cases}\Rightarrow2006\le x\le2007}\)

Vậy GTNN của A là 1 khi \(2006\le x\le2007\)

Chúc bạn học tốt.

Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)