Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)
Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)
2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)
Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)
1.
\(A=\left|x-0,4\right|+9\)
Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)
Vậy GTNN của A là 9 khi x = 0,4
2.
\(B=\frac{1}{8}-\left|x+3\right|\)
Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)
Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
giải (ko ghi lạ đề) mình đặt biểu thức trên là A
=(x+2)^2+4 > hoặc bằng 4 với x thuộc R
Amin = 4 tương đương x+2=0 suy ra x=-2
Mình dùng cách lớp 9 nhé:
Đặt \(y=x^2+4x+8\Leftrightarrow x^2+4x+\left(8-y\right)=0\)
\(\Delta'=2^2-\left(8-y\right)\ge0\Leftrightarrow y-4\ge0\Leftrightarrow y\ge4\)
Vậy ....